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High fidelity orbit propagation requires detailed knowledge of the solar radiation
pressure (SRP) on a space object. In turn, the SRP is dependent not only on the
space object’s shape and attitude, but also on the absorption and reflectance
properties of each surface on the object. These properties are typically modeled
in a simplistic fashion, but are here described by a surface bidirectional reflec-
tance distribution function (BRDF). Several analytic BRDF models exist, and
are typically complicated functions of illumination angle and material properties
represented by parameters within the model. For many cases, the resulting cal-
culation of the SRP would require a time consuming numerical integration. This
might be impractical if multiple SRP calculations are required for a variety of
material properties in real time, for example, in a filter where the particular sur-
face parameters are being estimated. This paper develops a method to make ac-
curate and precise SRP calculations quickly for some commonly used analytic
BRDFs. Additionally, other non-gravitational radiation pressures exist includ-
ing Earth albedo/Earth infrared radiation pressure, and thermal radiation pres-
sure from the space object itself and are influenced by the specific BRDF. A de-
scription of these various radiation pressures and a comparison of the magnitude
of the resulting accelerations at various orbital heights and the degree to which
they affect the space object’s orbit are also presented. Critically, this study sug-
gests that for space debris whose interactions with electro-magnetic radiation are
described accurately with a BRDF, then hitherto unknown torques would ac-
count for rotational characteristics affecting both tracking signatures and the
ability to predict the orbital evolution of the objects.
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INTRODUCTION

Observations that have been made on a special class of high area-to-mass ratio (HAMR) de-
bris objects® indicate they have area-to-mass ratio (AMR) values ranging anywhere from 0.1 to
10’s of m%kg. The resulting solar radiation pressure (SRP) perturbations, in part, explain ob-
served variation of orbital parameters that distinguishes their long-term orbital histories. The
SRP perturbation effects on orbital period, inclination and eccentricity can also produce signifi-
cant variations over relatively short periods of time (days to weeks). The amplitudes and periods
of the perturbations vary according to the magnitude of the AMR values®.

Previous analyses have shown that HAMR objects have AMR values that vary with time*?,
likely due to time varying SRP accelerations resulting from time varying solar illumination. It is
hypothesized that the time varying solar illuminations are, at least in part, due to orientation
changes with respect to the sun, and solar eclipsing periods. These in turn result in time varying
reflective and emissive accelerations that are difficult, at best, to predict.

Work by Kelecy and Jah* presented a detailed SRP formulation which modeled the time vary-
ing orientation and surface thermal characteristics of HAMR objects in space, and quantified the
perturbation errors due to a variety of modeling assumptions in the determination and prediction
of the orbits of these objects. It was shown that the errors due to the mismodeling of thermal
emissions are large enough to result in significant errors in the orbit predictions and, in particular,
can result in unbalanced accelerations in directions orthogonal to the object-sun line. The analy-
sis examined the sensitivity to the lack of a priori knowledge of attitude, shape or materials.

Linares et al.® recently demonstrated a mechanism that fuses both angles (line-of-sight) and
brightness (photometric flux intensity) measurements for the purpose of orbit, attitude, and shape
determination of a space object (SO). Whereas angles measurements are direct observations of
the SO’s orbital position, the brightness measurement is dependent on both orbital position and
the SO’s shape and attitude, and thus provides an indirect observation of these other attributes.
The physical correlation between the SO’s shape/attitude and its orbital position are caused by the
various non-gravitational forces and torques, such as the SRP, which are dependent on shape and
attitude, and produce a linear and angular acceleration on the SO. These non-gravitational forces
and torques can become significant for HAMR objects. It has been theoretically demonstrated
that simultaneously observing both angles and brightness measurements enables shape and atti-
tude estimates that leads to improved orbit propagation. This high-fidelity orbit propagation is
necessary to re-acquire the HAMR object over significant temporal sparseness in observations.

For this process to yield accurate results, however, the model used to calculate the brightness of
the SO must be consistent with the model used to calculate the SRP and other non-gravitational
forces and torques. Brightness models are based on the surface bidirectional reflectance distribu-
tion function (BRDF), where BRDFs define how the diffuse and specular components of light are
reflected from the surface. However, SRP calculations typically use an idealized BRDF in devel-
oping the characteristic equation and, in some cases, a simplified shape model (e.g. a diffuse can-
nonball). In this paper, the SRP calculation is reconciled with more physically realistic BRDF
functions.

The work presented here begins by establishing the dependence of the SRP on the BRDF in §2
with descriptions of various BRDFs in a common nomenclature presented in 83. The functions
required to reconcile the SRP to the BRDF are then calculated in 84. Other radiation pressures,
the Earth-albedo/Earth-infrared radiation pressure (ERP) and the thermal radiation pressure
(TRP) are described in 85 along with how these are reconciled with the BRDF. For the TRP, this
requires the development of a completely new model. Finally, the deterministic orbit and attitude



propagation equations used in the analysis are described in §6 and a comparison of the magnitude
of the various radiation pressures and effect on a HAMR object is presented in §7.
SRP DEPENDENCE ON BRDF

The BRDF (f;) defines how light is reflected from an opague surface with a given surface normal
direction (N), illumination direction (L with angles 6; and ¢; from N), and observer direction
(Vv with angles 6, and ¢, from N) as shown in Figure 1 and is given by

dL, (6,.4,)
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where dL, is the reflected radiance in Wmsr and dE; is the irradiance in Wm™. The bisector
vector between the illumination source and the observer is { = (f_ + \7)/‘(_ + \7‘ with angles o and g

fr(gi’¢i;9r’¢r;ﬂ‘): (1)

from N and is used later.

Figure 1. The Geometry of Reflection.

The acceleration caused by the SRP can be calculated by summing the individual contributions of
all the constituent illuminated “facets” that make up the object, where a facet is defined as a flat
surface of area A, and normal direction N . The acceleration is

. _NfZT F.(1)A fk(|:~ Nk)+ [f_+“ f cos@@dwj ]d/i )
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where Fi() is the solar flux (in Wm?nm™), A, is the facet area, f, is the fraction of the facet that is
illuminated (due to self-shadowing), mso is the mass of the object, c is the speed of light, and the

BRDF for each facet is integrated over all observer directions (& =V ) and all wavelengths. Ad-
ditionally (x), = xH (x) where H(x) is the Heaviside step function which is one for positive val-
ues and zero for negative values. The first term in the parentheses is simply the acceleration

caused by the incoming light, and the second term in the parentheses is the acceleration caused by
the reflected light.



In general, the BRDF is a complicated function of illumination angle and material properties rep-
resented by parameters within the particular BRDF model. For certain BRDFs, however, the in-
tegral can be solved analytically. For example, the case of a BRDF with a Lambertian diffuse
component (of diffuse reflectance p and fraction d) and purely “mirror-like” specular component
(of specular reflectance at normal incidence Fo and fraction s = 1 - d where R is the direction of

mirror-like reflection)
f, = d(ﬁj + 5(4—)':05 o-R ) ®)
/4 cos o,

yields an acceleration due to the SRP of
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where Fg,, is the total solar flux over all wavelengths.

For a more complicated BRDF, the exact solution (obtained by numerically integrating Eq. (2)) is
different than the idealized solution (obtained by Eq. (4)). The numerical integration of Eqg. (2),
however, is time consuming and might be prohibitive to calculate in certain applications. In this
paper, correction factors for Eq. (4) are developed and the acceleration is calculated by using
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where these A functions are functions of the illumination angle and possibly parameters within
the BRDF model. The same BRDF corrections can be applied when calculating the radiation
pressure from a different illumination source, as with Earth-albedo/Earth-infrared radiation pres-
sure (ERP), and the BRDF reflectivity differences need to be accounted for when calculating the
thermal radiation pressure (TRP) due to emission from the SO itself.

BRDF DESCRIPTIONS

The reflectance models of Ashikhmin-Shirley®’, a simplified Blinn-Phong®’, and Cook-
Torrance'®"" are used in this paper. In an effort to establish a common nomenclature, the general
BRDF is calculated using

f. =(dR, +5R;) ()

which depends on the diffuse bidirectional reflectance (Ry) and the specular bidirectional reflec-
tance (R;) and the fraction of each to the total (d and s respectively where d + s =1). These bidi-
rectional reflectances are calculated differently for the various models. In each model, however,

p is the diffuse reflectance (0 <p < 1) and F; is the specular reflectance of the surface at normal
incidence (0 < Fy<1).



To be used as a prediction tool for brightness and radiation pressure calculations, an important
aspect of the BRDF is energy conservation. For energy to be conserved, the integral of the BRDF
times cos &, over all solid angles in the hemisphere with 6, <90° needs to be less than unity.
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where Rqir and Rgpec are the total diffuse and specular reflectivity respectively.  For the BRDF
given in Eq. (3), this corresponds to constant values of Ryt = dp and Rgec = SFo. The remaining
energy not reflected by the surface is either transmitted or absorbed. In this paper it is assumed
the transmitted energy is zero, and thus the emissivity of the surface can be calculated by

e=1- (Rdiff + Rspec) (8)
The absorbed energy, thermal energy transfer between contacting surfaces, and subsequent re-
emitted thermal energy is accounted for in the new TRP model developed in 85.
Ashikhmin-Shirley BRDF

Also known as the Anisotropic Phong BRDF, the diffuse and specular bidirectional reflectances
are calculated using
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where Eqg. (9) is a non-Lambertian diffuse BRDF, and the Fresnel reflectance (F) in Eq. (10) is
given by Schlick’s approximation’

F=F +(%— Foj(l—\7-l:|)5 (12)

In addition to d, p and F,, the Ashikhmin-Shirley BRDF has two exponential factors (n,, ny) that
define the anisotropic reflectance properties of each surface.

Figure 2 shows the dependence of Rgir and Rgpec ON illumination angle and exponential factor (n =
n, = n,) for the Ashikhmin-Shirley BRDF where the integral of Eq. (7) was done numerically. In
both plots, d = s = 0.5, and thus the simple BRDF of Eq. (3) yields Rgit = Rspec = 0.25 and 0.5 for
the left and right plot respectively. The Ashikhmin-Shirley diffuse and specular reflectivities are
not constant, however, but rather complicated functions of illumination angle, exponential factor,
and the diffuse and specular reflectances. In all cases, however, Rgitt + Rspec < 1, thus energy is
conserved.
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Figure 2. Ashikhmin-Shirley Diffuse and Specular Reflectivity as a Function of lHlumination
Angle for Various Exponential Factors.

Blinn-Phong BRDF

The specular bidirectional reflectance of the original Phong model® is proportional to (N . Ii)n

where R is the perfect mirror-like reflection of L. Blinn® proposed that H be used instead of

R to make it easier and faster to calculate. Unfortunately, both versions of the model do not
conserve energy and thus are unsuited for the purposes of brightness estimation. The model can
be made to conserve energy, however, by modifying the leading term. In keeping with the desire
for simplicity in this model, the leading term is chosen to only be a function of the exponential
factor and set to yield a reflectivity equal to the mirror-like reflection of Eg. (3) at normal illumi-
nation. The diffuse and specular bidirectional reflectances are thus calculated using

Ry=p/7 (12)
_F,(n+2)n+4) o
Rs - 8 n4+ 2—n/2 (COSO{) (13)

where Eq. (12) is the Lambertian diffuse BRDF (as in Eqg. (3)). In addition to d, p and F, the
simplified Blinn-Phong BRDF has a single exponential factor (n) that defines the reflectance
properties of each surface.

Figure 3 shows the dependence of Rgir and Rgpec 0N illumination angle and exponential factor for
the simplified Blinn-Phong BRDF where again the integral of Eq. (7) was computed numerically.
The diffuse portion of the Blinn-Phong BRDF is Lambertian, and thus produces a constant dif-
fuse reflectivity. The modification of the leading term enables energy to be conserved in all in-
stances, but also produces the artifact of an unrealistically low specular reflectivity at grazing in-
cident illumination.
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Figure 3. Blinn-Phong Diffuse and Specular Reflectivity as a Function of lllumination Angle
for Various Exponential Factors.

Cook-Torrance BRDF
The diffuse and specular bidirectional reflectances are calculated using

Ry =p/7 (14)
DGF
R, = —x—=y=—= (15)
AAN-LAN-V

where again Eq. (14) is the Lambertian diffuse BRDF (as in Eq. (3) and as with Eq. (12) for
Blinn-Phong BRDF), and the facet slope distribution function (D), the geometrical attenuation
factor (G) and the reflectance of a perfectly smooth surface (F) are given by

D= m? clos4 a et .

G= min{l, 2N \'/"X;I\' V) 2% VH)|(_|N ' L)} 17
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In addition to d, p and F,, the Cook-Torrance BRDF has a facet slope (m) parameter that defines
the reflectance properties of each surface. The facet slope parameter of the Cook-Torrance

BRDF and the exponential factor of the Ashikhmin-Shirley and Blinn-Phong BRDFs are roughly
related by n = 2/m?.

withg® =n’ + (\7 - I:|)2 —1 and the index of refraction n =

Figure 4 shows the dependence of Rgir and Rgpec 0N illumination angle and exponential factor for
the Cook-Torrance BRDF where the integral of Eq. (7) was computed numerically and d = s =
0.5. Again, the Lambertian diffuse portion produces a constant diffuse reflectivity, as with the
Blinn-Phong BRDF. The specular portion becomes more mirror-like for smaller values of facet
slope, although with significant differences in the reflectivity at high solar illumination angles. In
all cases, however, energy is conserved.
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Figure 4. Cook-Torrance Diffuse and Specular Reflectivity as a Function of Illumination
Angle for Various Facet Slope Values.

In general, the parameters that comprise a BRDF model can be wavelength dependent. For
simplicity, this wavelength dependence is ignored and SRP correction factors for constant param-
eter values are derived. Adding back the wavelength dependence would simply involve adding
together separate solutions weighted by the solar flux at that particular wavelength.

DERIVING THE SRP A FUNCTIONS

The diffuse components of the Blinn-Phong and Cook-Torrance BRDFs are Lambertian, and thus
the diffuse A functions are simply unity. The diffuse component of the Ashikhmin-Shirley BRDF
is non-Lambertian, but the integral of Eq. (2) can be evaluated analytically. The resulting diffuse
A functions are



31 1573 0.\
Ad—As (Hi ! Sl:o ) = {E (1 - SFo )}(ﬁ}(l_ (1 - COZ : J } (19)

Ay g =1 (20)
Ay o =1 (21)
where the product of p and the term in square brackets of Eq. (19) is the equivalent Lambertian

diffuse reflectance.

Values for the specular A’s can be numerically calculated at a particular illumination angle and
set of BRDF parameters by comparing Eq. (5) with the numerical integration of Eq. (2) when on-

ly considering the specular component. Specifically, for L =N,

(£*R)coso, - (LL)

Agy(p, 0, = - 22
sl(p )numerlcal Fo sz gi ( )
E'-N)— (E'-I:)cos 7
A 0, = ( - ' 23
sz(p )numerlcal 2F0 cos Hi sz Hi ( )
where p represents parameters within the BRDF model and
L= | f(@-N,i)cos6,ade (24)

2z

For L =N, the two values cannot be separated and only a composite value can be computed

LN
F - _ASJ-(p’ Hi )numerical + ZASZ ( P, ei )numerical (25)
0

In this case, one of the specular A’s must be estimated using nonzero illumination angles as
the illumination angle approaches zero, and the other can be calculated from Eq. (25).

Once a large number of these values are obtained for a variety of input values, either an empir-
ical fit can be made or a look-up table can be constructed. For simplicity, the anisotropy of the
Ashikhmin-Shirley BRDF model is suppressed by setting the two exponential factors equal to
each other (n, = n, = n). To account for the anisotropy, a more complicated correction including
an azimuthal dependence would be required. The two remaining Ashikhmin-Shirley parameters
that are relevant to the A functions are the exponential factor (n) and the multiplication of the
specular fraction with the specular reflectance at normal incidence (sF,). The exponential factor
(n) is relevant for the Blinn-Phong BRDF model, while the microfacet slope (m) and the specular
reflectance at normal incidence (F,) are relevant for the Cook-Torrance BRDF model. Conse-
guently, much of the dependence on these parameters can be eliminated by first deriving analytic
solutions at special limits. Thus, the specular A functions are derived in three steps. In the first
two steps, the BRDF in certain limits are evaluated where an analytic solution in that limit can be
calculated. These correspond to the limit of normal illumination (L = N) and the limit when the
microfacet slope parameter goes to zero (for Cook-Torrance) or the exponential factor goes to



infinity (for Blinn-Phong and Ashikhmin-Shirley). The third step compares the numerical A val-
ues calculated for only the specular component to the analytic solution from the first two steps
combined to determine the residual, and it is this residual that is turned into a look-up table.

Step 1 (L =N): For the case of normal illumination, each BRDF can be simplified and the in-
tegral of Eq. (2) can be accomplished analytically. The resulting A functions are

232 1 g(n+1)

Agoas =Dg s = AASl(n):l_ (n +5)(n +3) (26)
n’+2n+8—4.27"2
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m m

where Ei is the exponential integral function. Due to values approaching infinity, Eq. (28) is not
calculable for small values of m, and therefore an approximation must be used for m < 0.045
(Acri(m) = 1 —0.0013m — 1.9634m?).

Step 2 (m —0,n— ): Again, as the microfacet slope approaches zero or exponential factor
approaches infinity, the BRDFs become more mirror-like and the integral of Eqg. (2) can be ac-
complished. The resulting A functions are

F(é,s,F
Agps =D ps = AASZ(Hi ' SFO): M (29)
0
Aggp =Dy gp = Aspz(‘gi ) = cos’ Hi (30)
F(o,F
Agcr =Agcr = ACTZ(Hi , Fo): y (31)
0

where F in Eqg. (29) is Schlick’s approximation of the Fresnel reflectance from Eq. (11) with

c=V-H=cos 6, in this limit and F in Eq. (31) is the reflectance of a perfectly smooth surface

N A

defined in Eq. (18), again with ¢ =V -H = cos4,.

Step 3 (fitting the residual): Up to 4488 separate values for each residual were calculated cor-
responding to 24 different values of illumination angle (; = [0°, 2°, 5°, 10°, 15°, 20°, 25°, 30°, 35°,
40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 82° 84°, 86°, 87°, 88°, 89°]), 17 different values of micro-
facet slope (m = [0.005, 0.01, 0.015, 0.02, 0.04, 0.06, 0.08, 0.1, 0.13, 0.16, 0.19, 0.22, 0.25, 0.3,
0.4, 0.5, 1]) or exponential factor (n = [1, 2, 3, 5, 7, 9, 12, 15, 20, 30, 50, 100, 200, 500, 1000,
5000, 10000]), and 11 different values of specular reflectance at normal incidence (Fo = [0.01,
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0.1,0.2,0.3,04, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99]). Since the correction to the Blinn-Phong BRDF
SRP is independent of F,, only different values of illumination angle and exponential factor were
evaluated.

The resulting data array was augmented into a 25 x 19 x 13 array (corresponding to 6; X n x
Fo) for Ashikhmin-Shirley, a 25 x 19 array (corresponding to &; x n) for Blinn-Phong, and a 25 x
18 x 13 array (corresponding to 6, x m x F,) for Cook-Torrance. Specifically, the 6;= 89° values
were duplicated into a ¢, = 90° matrix, an m = 0 or n = 10° value array was set to unity, the n = 1
values were duplicated into an n = 0 matrix, the Fq = 0.01 values were duplicated into a Fo =0
matrix and the Fo = 0.99 values were duplicated into a Fo = 1 matrix. Values for the residual
functions dy; and Js, are extracted from the data arrays via sequential linear interpolations.

The final A functions are thus

Asl—AS = AASl(n)AASZ (el ! SFO )551—AS (HI N, FO)

Moo s = A (A g2 (8, 5F, )5, s (0,1, F,) (32
Asl—BP BPl( ) ( |)§Sl BP(ei’n)

33

PN T (39

Asl CT — ACTl(m) CTZ( F0)551 CT (9 m F ) (34)

ASZ—CT :ACTl( ) CTZ( 0 552 CT (Hi’m F )

where Aasi(n) is defined in Eq. (26), Aas2(8;, N, Fop) is defined in Eq. (29), Agpi(n) is defined in Eq.
(27), Asz((gi) is defined in Eq (30), ACTl(m) is defined in Eq (28), ACTZ(Hia F()) is defined in Eq
(31). The valid range for these equations are all illumination angles (0° < ; < 90°), all specular
reflectances at normal incidence (0 < Fq < 1) and all microfacet slope values less than one (0 <m
< 1) or exponential factors less than 10° (0 < n < 10°).
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Figure 5. Percentage Difference (to acceleration at normal incidence) as a Function of Illumination
Angle for Various Exponential Factors and Specular Reflectance at Normal Incidence for Ashi-
khmin-Shirley BRDF. No Correction (baseline), step 1, step 2, and step 3 (Full Implementation - y-
axis scale 1/10™ that of other plots).

Figures 5-7 show the progression from no correction through step 3 using the A functions de-
scribed for the different BRDF models. These plots are the percentage difference with respect to
the acceleration at normal incidence for values of illumination angle, microfacet slope or expo-
nential factor, and specular reflectance at normal incidence. All values are midway between en-
tries in the look-up tables, so represent the worst deviations that might occur. Note how in all
cases, step 1 corrects the accelerations exactly for normal illumination as expected. Additionally,
step 2 improves the low slope values (Cook-Torrance) and high exponential factor values (Ashi-
khmin-Shirley and Blinn-Phong) as expected.

The maximum uncorrected difference for Ashikhmin-Shirley is approximately 39% (for n = 6,
Fo = 0.05, and 6; = 1°), while corrected values are <0.2%. The maximum uncorrected difference
for Blinn-Phong is approximately 15% (for n = 6 and 6; = 47.5° ), while corrected values are <
0.4%. The maximum uncorrected difference for Cook-Torrance is approximately 7% (for m =
0.275, Fo = 0.95, and ¢; = 1°), while corrected values are <0.2%.
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Phong BRDF. No Correction (baseline), step 1, step 2, and step 3 (Full Implementation - y-axis

scale 1/10" that of other plots).
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Figure 7. Percentage Difference (to acceleration at normal incidence) as a Function of Illumination
Angle for Various Microfacet Slopes and Specular Reflectance at Normal Incidence for Cook-
Torrance BRDF. No Correction (baseline), step 1, step 2, and step 3 (Full Implementation - y-axis
scale 1/10™ that of other plots).

OTHER RADIATION PRESSURE MODELS

Other sources of radiation pressure exist where the difference from the baseline of Eq. (4) are
comparable to the BRDF SRP correction of Eq. (5). Earth-albedo and Earth-infrared radiation
pressure (ERP) is identical in form to the SRP where the Earth’s reflection in the visible and
emission in the infrared takes the place of the Sun as the illumination source. Calculation of the
ERP acceleration is more complicated due to the larger solid angle subtended by the Earth with
respect to the SO and the introduction of an empirical model to represent the Earth’s albedo and
emissivity. As with the SRP acceleration, the SO’s surface BRDF also needs to be considered.
The final radiation pressure to be considered is the SO’s thermal radiation pressure (TRP). To
calculate the TRP acceleration, one must know the temperatures of the various surfaces of the
SO. This requires a model that calculates these temperatures given the SO’s attitude, the passage
of each surface into and out of shadow, and the thermal interconnection between surfaces.
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Earth-Albedo/Earth-Infrared Radiation Pressure

A slightly modified model of Knocke et al."*** is used to calculate the ERP acceleration. In this
model, the Earth is divided into N regions and Eq. (4) is used to calculate the contribution of each
region to the space object’s acceleration by using

A A 1-s.(F), L,
NfacezsiFEanh'jAdeLj -Nk)+ ( 2k( 0)k) j (35)
= mSOC +(§dkpk +25k(F0)k|:- . Nijk

a‘ERP
]

The total Earth flux for each region j is calculated by

47R? (cosa;).
S— (36)

N o

1
I:Earth,j = FSun(aj(Cosej )+ +Zgjj

where Fg,, is the total solar flux as used in Egs. (3 - 5), a; is the Earth’s albedo, 6 is the angle be-
tween the solar illumination vector and normal to the surface of the j" Earth region, g is the
Earth’s emissivity, o; is the angle between the viewing vector (center of j™ Earth region to SO)
and normal to the surface of the Earth region, and r; is the distance from the center of j™ Earth
region to the SO. Knocke et al. used N = 19 regions consisting of a single sub-object region and
6 and 12 regions in two concentric rings, all with equal projected and attenuated areas. Instead,
as reflected in Eq. (35), in this paper the entire Earth surface is divided into N evenly distributed
and equal area regions and ERP accelerations are calculated from only those regions visible from
the space object (cos a > 0). N is chosen based on the SO’s altitude to ensure at least 40 regions
are visible at any one time.

0s 05 05 05

Figure 8. (a) N =100 and (b) N = 400 Distribution of Earth Regions on Unit Sphere.
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The process used to generate the N evenly distributed regions employs a slight variation to the
prescription of Rakhmanov et al."**> Specifically, the region centers (latitude and longitude in
radians) are calculated using

1-22
A, =tan™ |z (37)
Z, 2
I, =mod(, +=(3-5)27) (38)

forj=1...N,wherez; =1-1/N, 1, =0, and z; = z;., — 2/N. Figure 8 displays this distribution
for N =100 and N =400 for (a) and (b) respectively.

The Earth’s albedo and emissivity are empirical functions of latitude and also account for season-
al variations:

a=a,+a,P(sin1)+a,P,(sin1) (39)
£=¢g,+&P,(sin1)+&,P,(sin1) (40)

where ay = 0.34, a; = 0.1cos(2x(JD-t,)/365.25), a, = 0.29, & = 0.68, & = -0.07cos(2x(JD-
tg)/365.25), ¢, = —0.18. JD is the Julian Date, t, = 2444960.5 (1981 Dec 22), A is the Earth re-
gion’s latitude, and P; and P, are Legendre polynomials of orders 1 and 2 respectively. Although
computationally expensive, the equivalent to Eq. (5) can be easily used to calculate the BRDF
corrected ERP.

Thermal Radiation Pressure

A new thermal model is developed that is compatible with the surface BRDF. First, however, the
thermal model of Marshall and Luthke' is examined to provide a comparison in calculating the
TRP. In this model, as with the SRP and ERP, the contribution of each facet is calculated sepa-
rately and then summed. The acceleration is

N facets 2 gk GTk4 Ak N
k
o 3MgC

Arpp =

(41)

where g is the emissivity of the particular surface, o is the Stefan-Boltzmann constant, and Ty is
the temperature of the particular surface. This equation assumes the emissivity is independent of
emission angle (i.e. it can be represented by a Lambertian-like function). The temperatures are
determined using empirical functions of the form

T =k, +k, cos(ﬁJ{l — exp[MH (42)
K, K,

where
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—t, }cosé,
s, =—k, In| max| 1—ex 2 shadow. 3 0001 43
! ! [ { p( ksj cosé,,, D (43)

for illuminated surfaces, and

T =k, +k, exp(_(tzk—jLSZ)J (44)

5

s, = —kKq |n(max{cos£95*;ﬂ}o.oomD (45)
3

for surfaces in shadow where the temperature cools to some specified minimum in a time de-
pendent on the material characteristics. The adjustable material parameters for each surface are k;
(cold equilibrium temperature), k, (difference between cold and hot equilibrium temperatures), ks
(rotational rate/thermal inertia constant), k, (transition time from hot to cold equilibrium tempera-
ture), and ks (transition time from cold to hot equilibrium temperature). The other quantities are
values that need to be calculated for a particular surface: t; (time since shadow exit), t, (time since
shadow entry), &; (illumination angle), Gsnadow (illumination angle at shadow entry), and 6y, (illu-
mination angle at shadow exit).

where

Implicit in this model is the emissivity as related to the diffuse and specular reflectances. For the
simple Lambertian diffuse and mirror-like specular BRDF, to conserve energy, this reduces to

e=1-Rs —R,.. =1-dp—SsF, (46)

spec

Empirical values for various surfaces typical of spacecraft materials are shown in columns 1-8
in Table 1 (from Table 5 in Ref 15). The values to be modeled in this simulation are shown in
column 9.

Table 1. Sample TRP Model Values

1 2 3 4 5 6 7 8 9
ki (K) 181 168 191 190 240 103 236 234 250
ka (K) 233 178 18 63 98. 125 110 96 50
5
ks 1.2 1.0 1.0 1.0 1.0 11 1.0 1.0 1.2
5 0 5 0 6 5 0 0 5
ks (S) 621 282 759 426 519 680 805 806 700
ks (S) 111 120 624 487 767 413 828 866 500

The key to calculating the TRP is determining the temperatures of each surface of the SO.
The temperature of a surface depends on three quantities: heating of the surface due to radiation
(e.g. solar or Earthshine), cooling of the surface due to radiation (e.g. blackbody emission that
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produces the TRP), and heating/cooling of the surface due to conduction (e.g. connection to other
surfaces or components of the SO). From one time step to the next, this can be summarized in the
equation

P

absorb

+P

emit

C

+P,

conduct ) At

(Ti+1 )k = (Ti )k + (

(47)

where C is the heat capacity related to the surface (in Joules per Kelvin). The power being ab-
sorbed by the surface can be represented by

N Sources

(Pabsorb)k = Z(l_ (Rdiff )j,k - (RSpec )j,k)FjA<(I:j ) I§|k)+ (48)

=1

where A is the surface area, I:j is the direction to the illumination source, and N is the surface

normal, Rgir and Rgpec are the diffuse and specular reflectivity of the K" facet for the jth illumina-
tion source, and F; is the total flux over all wavelengths of an illumination source (e.g. Sun or
Earth region). Note that Psorp iS always positive. The power being emitted from the surface can
be represented by

(Pemit )k =—& A UTkA (49)

which is simply the blackbody radiation at a particular temperature. The emissivity of the k™ fac-
et to be used in Egs. (49) and (41), to be consistent with the surface BRDF, is calculated using

<C"k = l (Rdlff + Rspec) (50)

where the L =N notation in the subscript signifies these are the diffuse and specular reflectivity
associated with that geometry for the given BRDF parameters. Note that Pen; IS always negative.
Finally, the power being conducted to or from the surface can be represented by

N body

conduct Z Akk k "MKk, k (VT )kk k (51)

kk=1

where k, A and (@T) are the various conductivities, contact surface areas, and temperature gradi-

ents between the the k™ surface and the Npoay Other portions of the object. Pconguct IS pOSitive when
energy flows into the surface and negative when energy flows out of the surface.

The additional parameters required for each surface in this model beyond those associated
with the BRDF is a term related to the surface heat capacity (in Eq. (47)) and terms related to the
conductivities and contact surface areas between the surface and other parts of the object (in Eq.
(51)). In practice, the assumption that Eq. (51) and the associated parameters can be replaced by
two parameters is made such that

(Pconduct )k == Kk (Tk - Tbody ) (52)

where K is a term related to conductivity of each surface (in Watts per Kelvin) and Ty, IS an
equilibrium temperature for the body as a whole. Thus, for a cube, this TRP model would require
13 total parameters to represent the SO as opposed to 30 total parameters in the Marshall-Luthke
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model. When all the surfaces are identical, 3 total parameters would be necessary as opposed to 5
total parameters in the Marshall-Luthke model.

The temperatures of all six sides of a slowly rotating cube fixed in space with the Sun as the
only illumination source as predicted by the Marshall-Luthke model using the values in column 9
of Table 1 are calculated and displayed in Figure 9. The cube is rotating at 0.017 rad/s about it’s
z-axis. The slight discontinuity on the declining slope of the £x and +y temperature curves corre-
sponds to the time when the side goes into shadow due to the rotation of the cube and the temper-
ature changes from being calculated with Egs. (42) and (43) to Egs. (44) and (45).

300

290

280+

270t

Temperature (K)

260

250

240

i i 1 I I i i
0 500 1000 1500 2000 2500 3000 3500
time (s)

Figure 9. Temperatures of the Different Sides of a Slowly Rotating Cube with Identical
Marshall-Luthke Surface Parameters.

The —z-axis of the cube is facing away from the Sun, so is at the constant cold temperature of
k; = 250 K, while the +z-axis of the cube is illuminated by the Sun at a constant non-normal an-
gle, so is at a constant temperature less than k; + k, = 300 K. The other sides alternatively are
illuminated by the Sun and then are in shadow, and since they are identical, they exhibit the same
temperature profile as a function of time.
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Figure 10. Temperatures of the Different Sides of a Slowly Rotating Cube with Identical
Surface Parameters of New TRP Model.

Figure 10 displays the temperatures of all six sides of the same cube using the new TRP
BRDF corrected model with C = 9000 J/K, K = 20 W/K, and Ty = 258 K, and the Ashikhmin-
Shirley BRDF with p = F, = 0.5, d =s = 0.5, and n, = n, = 10. The TRP model values were de-
termined by trial and error to produce temperature profiles similar to those in Figure 9. In gen-
eral, adjusting C alters the rate at which the surface heats and cools, with a greater value of C re-
sulting in a longer heating/cooling time, adjusting K alters the peak temperature, with a greater
value of K resulting in a lower peak temperature, and adjusting Tyoqy alters the overall level of the
temperature profile.

There are some features between the models that are not reconciled. Most notable is the +z-
axis facing side’s temperature. In both models it is constant due to the constant solar illumina-
tion. The level in the Marshall-Luthke model, however, is significantly higher than the new mod-
el. The other significant difference is the timing of the peak temperature on the x-axis and y-axis
sides with the Marshall-Luthke model peaking earlier than the new model. Likely the new model
is unable to replicate exactly the temperature profiles of the Marshall-Luthke model. The new
model, however, has the advantage of being physics based and reconciled with the surface BRDF,
and so is used in the remainder of the paper.

ORBIT AND ATTITUDE PROPAGATION

The principal purpose of the trajectory and attitude modeling carried out in this paper is to
emphasize the difference in behavior of the SO predicted by conventional surface force models
with that predicted by BRDF-corrected techniques. Hence the conservative force field is treated
simplistically whereas the surface forces are given a rigorous formulation.

In this paper the position and velocity of an Earth orbiting SO are denoted byr' =[x, v, z]
and v' :[vx,vy,vz]', respectively. The Newtonian two-body gravitational equations of motion

with radiation pressure acceleration in Earth-centered inertial coordinates (ECI) are given by
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. | | I

Nsides
where the terms x represents the gravitational parameter of the Earth and a,, = ZaL represents
k=1

the acceleration perturbation due the various radiation pressures as described previously and
summed over all the surfaces, while a'J2 is the gravitational perturbation due to non-symmetric

distribution of mass along the lines of latitude of the Earth. The acceleration due to the J2 effect
is given by’

1-5 2| | X
ania
2 2
_ 3| # R 11y g 2 || Y
2 el | AR Ji 0
2
39 le

where J, = 1.082 626 683x10° is the coefficient for the second zonal harmonic and R, =
6,378.137 km is the mean equatorial radius of the Earth.

A number of parameterizations exist to specify attitude, including Euler angles, quaternions,
and Rodrigues parameters™®. This paper uses the quaternion, which is based on the Euler an-

gle/axis ~ parameterization. The  quaternion is  defined asq= [?;T q4]T with
¢=[q, g, q,] =8sin(v/2)and g, =cos(v/2), where éand v are the Euler axis of rotation

and rotation angle, respectively. This vector must satisfy the constraint q'q=1. The attitude
matrix can be written as a function of the quaternion by

=E(q) ¥(a) (55)
where
| X
E(q){q“ 313;[& q (56)
l,.—|Ex
‘P(q)={q4 3x3 T[& ]} (57)
-8
and
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0 -a, a,
[ax]=| a, 0 -a (58)
-a, a4, 0

for any general 3x1 vector a. The quaternion kinematics equation is given by

2(q)o (59)

N |-

q=

where @ is the angular velocity. The angular velocity dynamic equation can be written as

o= J:’l(M — [(o x]J:(o) (60)

where J the inertia tensor for the SO and M are any external applied torques. The SO is as-
sumed to be a rectangular prism (sides a and b and length 1) therefore the principle components of
the inertia tensor are given by simple equations:

2 2 2, q2 2 2
Jy=mg (a 1+2b) J, =My (a 1-;| ) Jy =My (I fzb)

(61)

The radiation pressure moments can be calculated by considering that the forces act through
the center of each facet. Then the radiation pressure moment can be written as

N sides

M =mg, Z[rkB X]A(CI)aL (62)
k=1

where rkB is the location of the geometric center of each facet with respect to the center of mass

of the SO in body coordinates and A(q) is the attitude matrix calculated by the quaternion q. The
radiation pressure moment is used with Eq. (60) to simulate the rotational dynamics of the SO.

RADIATION PRESSURE PERTURBATION COMPARISONS

A 1-m cube HAMR obiject that is 1-kg in mass is placed in GEO, a GPS orbit, and a 1000-km
height Sun-synchronous LEO, with Table 2 listing the orbital details.

Table 2. Orbit Specifications

GEO GPS LEO

a (km) 42164 26560 7378
e 0 0 0
i (deg) 0 55 98
My (deg) 90 90 90
w (deg) 0 0 0
Q (deg) 0 0 0
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The SRP in Eq. (2), BRDF-corrected SRP using the Ashikhmin-Shirley BRDF with n, = n, =
10 in Eq. (10), ERP in Eq. (35) and TRP with C = 9000 J/K, K = 20 W/K, and Tgeq, = 258 K in
Eqg. (41) are calculated and compared as well as the differences in total, radial, in-track, and cross-
track distances as a function of time. Each surface of the cube is identical withp =F;=0.5,d=s
=0.5,and ¢ = 0.5.

In this simulation, the initial attitude, using the quaternion parameterization, is set to q =
[0.7041; 0.199; 0.0896; 0.7041]", the initial angular rate is zero, and the values are propagated for
7 days with a 6 s time step. The initial date and time are 2010 Mar 15, UT 4:00:00. It should be
noted that these tests are designed to highlight the differing trajectory and attitude behaviors pre-
dicted by the various radiation pressures (SRP vs. ERP vs. TRP) and the two modeling approach-
es (traditional SRP vs. BRDF-corrected SRP).
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Figure 11. (a) Absolute Magnitude of Radiation Force, and (b) Fractional Difference for
Out of Eclipse Times for GEO.
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Figure 12. (a) Absolute Magnitude of Radiation Force, and (b) Fractional Difference for
Out of Eclipse Times s for GPS orbit.
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Figure 13. (a) Absolute Magnitude of Radiation Force, and (b) Fractional Difference for
Out of Eclipse Times for LEO.

Figures 11-13 plot the absolute magnitude of the various radiation forces as a function of time
for the HAMR object at GEO, a GPS orbit, and LEO, respectively, for the last half day of the
simulation. Also plotted are the fractional differences of the BRDF-corrected SRP to the SRP
and the relative difference of the ERP and TRP to the SRP for times when the object is out of
eclipse. Whereas the relative magnitude of the TRP and difference of the BRDF-corrected SRP
to the SRP remains about the same for each orbit type, the magnitude of the ERP depends on ra-

24



dial distance as expected. Note the regular entry into and exit out of earth eclipse in the accelera-
tion time histories coincident with the orbit of the satellite.

Of particular note is the variation in magnitude of the BRDF-corrected SRP to the others.
This results from the fact that only the BRDF-corrected SRP produces a torque on the HAMR
object resulting in attitude changes and thus variations in the projected area and resulting acceler-
ation. For a rectangular prism, the SRP and ERP (with the simple Lambertian diffuse and mirror-
like specular BRDF) and TRP (with the Lambertian emissivity) do not produce a torque. The
BRDF-corrected SRP, however, does produce a torque because the specular reflectivity is a func-
tion of the illumination angle and the specular reflection is not exactly at the angle of the mirror-
like reflection.

Figures 2-4 illustrated the former point while Figure 14 illustrates the latter point by plotting
the difference between the actual angles of peak specular reflection to the mirror like angle as a
function of illumination angle for various values of the exponential factor in the Ashikhmin-
Shirley BRDF. As expected, as the exponential factor increases, the specular reflection becomes
more and more mirror-like.

This significant difference between the rotational dynamics of the SO when using the simplis-
tic SRP of Eg. 4 and the BRDF-corrected SRP of Eq. 5, highlighted by the discovery of a hitherto
unknown torque caused by the specular reflectance of the SO’s surface, illustrates the importance
of accounting for these effects.
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Figure 14. Difference Between Actual Angles of Peak Specular Reflection to the Mirror-
Like Angle as a Function of lllumination Angle.

Figures 15-17 plot the total difference, radial difference, in-track difference, and cross-track
difference for positions calculated using the SRP, BRDF-corrected SRP, SRP + ERP, and SRP +
TRP as compared to the position with the SRP on a completely absorptive cannonball (SRP-AC)
of 1.2 m? cross-sectional area as a function of time for the last half day of the simulation. For the
most part, to this scale, the differences are all very similar.
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Figure 15. (a) Total Difference, (b) Radial Difference, (c) In-Track Difference, and (d)
Cross-Track Difference in Positions from SRP on completely absorptive cannonball for
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Figure 16. (a) Total Difference, (b) Radial Difference, (c) In-Track Difference, and (d)
Cross-Track Difference in Positions from SRP on completely absorptive cannonball for

GPS.
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Figure 17. (a) Total Difference, (b) Radial Difference, (c) In-Track Difference, and (d)
Cross-Track Difference in Positions from SRP on completely absorptive cannonball for
LEO.

Figures 18-20 plot the total difference, radial difference, in-track difference, and cross-track
difference for positions calculated using the BRDF-corrected SRP, SRP + ERP, and SRP + TRP
as compared to the position with SRP only as a function of time for the last half day of the simu-
lation. In this particular simulation, the BRDF correction produces the largest variation followed
by the TRP and then the ERP with only minor differences. Variations in orbit, SO shape, and
surface properties would undoubtedly produce different magnitudes. For high fidelity orbit prop-
agation, all these non-gravitational forces need to be accounted.
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Figure 18. (a) Total Difference, (b) Radial Difference, (c) In-Track Difference, and (d)
Cross-Track Difference in Positions from SRP-Only Case for GEO.
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Figure 19. (a) Total Difference, (b) Radial Difference, (c) In-Track Difference, and (d)
Cross-Track Difference in Positions from SRP-Only Case for GPS orbit.
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Figure 20. (a) Total Difference, (b) Radial Difference, (c) In-Track Difference, and (d)
Cross-Track Difference in Positions from SRP-Only Case for LEO.

CONCLUSION

Brightness models are dependent on the surface BRDF. Current radiation pressure models, how-
ever, ignore the BRDF, even though the BRDF has a significant affect on the magnitude and di-
rection of the resulting radiation pressures. It was shown in this paper how the models used to
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calculate the various radiation pressures can be made consistent with the model used to calculate
the brightness of a SO. This required the addition of BRDF-specific correction factors to the cal-
culation of the SRP and ERP, and the development of a new model for the TRP. The effect of a
SO’s shape and attitude on its orbital position is through the various non-gravitational forces.
Making this connection more physically realistic strengthens the possibility of using simultaneous
angles and brightness measurements to estimate a SO’s shape and attitude. In addition, and criti-
cally, this study suggests that for space debris whose interactions with electro-magnetic radiation
are described accurately with a BRDF, then hitherto unknown torques resulting from differences
in the specular reflectance with illumination angle would account for rotational characteristics
affecting both tracking signatures and the ability to predict the orbital evolution of the objects. In
practice, the surface parameters of a particular BRDF model are first chosen to approximate a
given material, whether highly specular as with aluminum or Mylar, or more diffuse as with
paint. The observed light curves are then used to refine the parameters that define the surface
BRDFs, and these parameters, in turn, refine the SRP calculation to improve the propagation of
the orbit and spin state analysis of the SO.
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