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This paper employs a geometric integration algorithm to propagate the quaternion kine-

matics in order to preserve the unit norm. While many studies have focused on this as-

pect specifically while considering other systems, this work has the additional objective of

studying result accuracy. Many applications including space object tracking and asteroid

cataloguing require state propagation over longer time intervals where only sparse obser-

vation data is available. It is during these intervals that the quaternion norm drifts and

accuracy decreases as a result of error accumulation. Quaternion trajectories obtained us-

ing third and fourth order Crouch-Grossman Lie group methods are compared with those

calculated using the classical third and fourth order Runge-Kutta algorithms using different

time steps. Results show that the use of the Crouch-Grossman Lie group method better

preserves the quaternion unit norm for the larger time steps considered. It is also found

that the fourth order Crouch-Grossman algorithm is more accurate than its Runge-Kutta

counterpart except for the smallest time step used.

I. Introduction

The group of unit quaternions is often used in practice to parameterize the attitude of an object or
reference frame with respect to another, for example the attitude of a space vehicle, an orbiting satellite, or
an asteroid with respect to an inertial reference frame. In navigation or tracking applications, dynamic models
are combined with available observation data into an estimator in order to improve state knowledge as well
as to identify unknown parameters. One important component of sequential state estimation is to propagate
the system state in the absence of observation data. Quaternions lead to difficulties during this propagation
stage since classical numerical integration methods are unable to preserve the unit norm. Additionally,
brute-force normalizations may introduce errors that accumulate over longer propagation periods.

Quaternion norm preservation and accuracy is important in many areas; one prevailing subject is space
situational awareness. The U.S. Air Force is collecting data in order to catalogue Earth orbiting satellites,
objects and debris. Accurate tracking of all Earth-orbiting objects is important since their presence can be
extremely hazardous to current space missions as well as disruptive for any future mission. One method
currently used to estimate the attitude of such objects makes use of light curve data.1 This concept has also
been improved upon in order to estimate the object’s orbit trajectory and determine the object’s shape.2

However, data is sparse as a result of the number of sensors available and the large amount of objects in
orbit.2 As a result, an object’s attitude may often need to be propagated very accurately over long time
intervals before an update is possible.

Asteroid tracking poses the same difficulties because of its similarity to the aforementioned problem of
cataloguing Earth-orbiting objects. Light curve data is also being used to estimate the shape and state of
asteroids,3, 4 although observations are again infrequent and limited. Accurate integration algorithms are
required in order to provide reasonable state estimates when new observation data becomes available.

Classical numerical integration methods may introduce large inaccuracies due to their inherent inability
to preserve quaternion group properties. In practice, a brute-force normalization is performed at each
time step to maintain the quaternion unit norm. This may however introduce additional errors in accuracy.
Propagation errors due to the lack of quaternion norm preservation or the accumulation of errors from brute-
force normalizations may affect the attitude estimate during an extended time interval without observation.
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The objective is to employ a Lie group method developed by Crouch and Grossman5 in order to integrate
a quaternion parameterized attitude. Its ability to preserve the unit norm will be compared with that of the
classical Runge-Kutta (RK) method. While it is expected that the attitude state will better remain on its
manifold using a Lie group method, this work is equally concerned with determining what improvement in
accuracy might be obtained. The accuracy of quaternion estimates obtained using RK methods is compared
with those obtained using the Crouch-Grossman (CG) method. Additionally, a RK method with brute-force
quaternion normalizations at each time step will be considered. This will permit the determination of any
impact these operations have on result accuracy and more importantly the comparison of the new approach
with that typically employed in practice.

The paper is organized as follows. In Section II, the Lie group structure of quaternions is described.
Section III recalls classical RK algorithms, which at present are extensively employed in space applications
to propagate attitude state knowledge. This section also provides the CG algorithm whose capabilities and
performance this work explores relative to classical RK methods. The fundamental differences between
these two approaches, which are very important in application, are also discussed. Finally in Section IV,
simulations are conducted to highlight any advantage of each, particularly in the accuracy of the results
over extended propagation intervals. Simulation parameters are defined such that a closed-form solution is
available as a basis for evaluation.

II. Quaternions as a Lie Group

The set of unit quaternions given by the unit sphere S3 in R
4 forms a group under quaternion multi-

plication. This group is a Lie group of 3 dimensions and is isomorphic to the special unitary group SU(2).6

The Lie algebra of SU(2), which is written as su(2), is isomorphic to R
3. Each quaternion is expressed by its

real vector representation q =
[

q1 q2 q3 q4

]T

. Accordingly, each element of su(2), denoted by ω ∈ R
3,

is identified with its real matrix representation

1

2
Ω(ω) ≡

1

2

[

−[ω×] ω

−ωT 0

]

∈ su(2) (1)

where the cross product matrix is given by

[ω×] =







0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0






(2)

In this form, the quaternion kinematics are7

q̇ =
1

2
Ω(ω)q (3)

which is a differential equation on SU(2).
It is important to recall the exponential operator, exp(·), which here maps as

exp : su(2) → SU(2) (4)

For example, in the case of constant ω the solution to Eq. (3) can be written as

q(t) = exp

(

t
1

2
Ω(ω)

)

q(0)

= qω ⊗ q(0)

(5)

where qω is the quaternion corresponding to a rotation about the axis ω/‖ω‖ through the angle t‖ω‖ and
⊗ denotes quaternion multiplication. Solutions to Eq. (3) are known for some more general cases.8 In all
cases however, returning to Eq. (3), the tangent space at q is of the form 1

2Ω(ω)q and the solution of Eq. (3)
is such that q(t) belongs to S3 for all t. This is the group property that should be preserved throughout
numerical integration.
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III. Numerical Integration

In this section, the numerical algorithms used to integrate Eq. (3) are introduced. The first is the Runge-
Kutta (RK) algorithm and the second is the Crouch-Grossman (CG) Lie group approach. In Section IV,
results of integrating Eq. (3) using both methods will be compared.

A. Classical Runge-Kutta Integration

From the quaternion kinematics Eq. (3), let

f(q, t) =
1

2
Ω(ω(t))q (6)

With this definition, the classical s-stage Runge-Kutta integration algorithm applied to Eq. (3) is given by9

qk+1 = qk +∆t

s
∑

i=1

bik
(i) (7a)

k(i) = f(q(i), tk + ci∆t) (7b)

q(i) = qk +∆t

i−1
∑

j=1

aijk
(j) (7c)

where ∆t is the time step and {aij}1≤j<i≤s, {bi}1≤i≤s, and {ci}1≤i≤s are prescribed coefficients. The
primary disadvantage of the RK integration method is that the integration of a given qk ∈ S3 produces the
approximation qk+1 which does not belong to S3. This is easily observed in Eq. (7a). As mentioned earlier,
one possible remedy is to project qk+1 onto the unit sphere at each time step by brute-force normalization.
At each time step, the following update would be performed:

qk+1 → qk+1/‖qk+1‖ (8)

Clearly, Eq. (8) ensures a normalized quaternion to within machine precision. However, the accuracy of this
approach will be studied later.

Table 1. Butcher Table

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

As is well-known, a particular RK method is determined by the choice of s and determining the coefficients
in such a way as to achieve a desired order of accuracy (the number of stages bounds reachable orders of
accuracy). For the RK algorithm, when these order conditions are imposed, the coefficients are typically
under-determined and many satisfactory solution sets exist. Third and fourth order RK algorithms are
considered here. Their coefficients can be conveniently listed in a Butcher table as depicted in Table 1. The
coefficients for the three stage, third order Runge-Kutta (RK3) employed in this work are listed in Table 2
and those for the four stage, fourth order Runge-Kutta (RK4) are in Table 3. The brute-force normalized
third and fourth order Runge-Kutta methods (RK3n and RK4n, respectively) are the same as the RK3 and
RK4 though at each time step the normalization in Eq. (8) is performed.

B. Crouch-Grossman Lie Group Method

As observed above, the RK method updates q in such a way that it evolves on R
4. Since q is not arbitrarily

defined in R
4, but only on a smooth manifold contained within R

4, namely the unit 3-sphere S3, one may
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Table 2. 3-Stage, Third Order Runge-Kutta (RK3)

0

1/2 1/2

1 −1 2

1/6 2/3 1/6

Table 3. 4-Stage, Fourth Order Runge-Kutta (RK4)

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

argue that the update of q should not be made unconstrained in R
4. The idea behind the Crouch-Grossman

method suggests that this update instead be performed by the exponential map of the associated Lie algebra.
Now, reconsider the numerical integration of

q̇ =
1

2
Ω(ω)q (9)

using instead this Lie group method. The s-stage Crouch-Grossman algorithm is given by5, 10

qk+1 = exp(∆t bsK
(s)) · · · exp(∆t b1K

(1))qk (10a)

K(i) =
1

2
Ω(q(i), tk + ci∆t) =

1

2
Ω(ω(tk + ci∆t)) (10b)

q(i) = exp(∆t ai,i−1K
(i−1)) · · · exp(∆t ai,1K

(1))qk (10c)

Clearly, both ∆t ai,jK
(i) and ∆t biK

(j), for 1 ≤ i ≤ s and 1 ≤ j < i, are elements of the Lie algebra su(2).
Since trace(Ω) = 0 it follows from det[exp(Ω)] = exp[trace(Ω)] that det[exp(Ω)] = 1. It can also be verified
that exp(Ω)exp(Ω)T = exp(Ω)T exp(Ω) = I4×4 and thus not only is exp(Ω) an orthogonal matrix, but it
belongs to SO(4) because of its unit determinant. As a result, since the product of matrices belonging to
SO(4) also belongs to SO(4), the algorithm in Eqs. (10a)-(10c) preserves the quaternion unit length and
therefore yields a qk+1 that belongs to S3. In Eq. (10a), qk+1 can be interpreted as being obtained from
qk by a product of incremental steps along the unit hypersphere. In fact, each increment is equivalent to
quaternion multiplication under which the set of unit quaternions is closed. This method preserves the group
aspects of quaternions.

At this point, it is useful to note that since the Lie algebra in Eq. (1) does not depend on the state q,
the intermediate q(i) need not be calculated and therefore Eq. (10b) is not needed. Additionally, the matrix
exponentials in Eqs. (10a) and (10c) have a closed-form solution given by7

exp(∆t bjK
(j)) = I4×4 cos

(

1

2
∆t bj‖ω

(j)
k ‖

)

+Ω(ω
(j)
k )

1

‖ω
(j)
k ‖

sin

(

1

2
∆t bj‖ω

(j)
k ‖

)

(11)

where ω
(j)
k = ω(tk+cj∆t). Therefore, no approximation or truncation need be performed in their calculation.

The solution in Eq. (11) is obtainable only because the system coefficients are “frozen” at their current values;
in other words, Eq. (11) assumes a zero-order hold on system parameters including the angular velocity.
Therefore, it is undesirable to apply Eq. (11) directly to Eq. (3) since ω is time-dependent while a numerical
integration algorithm such as the RK or CG approach is better suited as it takes this variation into account.

The order conditions for CG algorithms are more complicated than those of classical RK algorithms.
These conditions include those encountered for RK methods as well as additional highly nonlinear condi-
tions.11 While CG methods enjoy the advantage that their coefficients also construct valid RK methods of
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the same order, which can be implemented for additional state variables such as ω, these coefficients are in
fact difficult to obtain and much research is dedicated to this objective which is outside the scope of this
work.11, 12

A third order formulation, denoted by CG3, can be achieved using three stages.5, 13 The coefficients for
this case10 are provided in Table 4. Given qk and using the CG3 as an example, qk+1 is obtained through

Table 4. 3-Stage CG3

0

3/4 3/4

17/24 119/216 17/108

13/51 −2/3 24/17

the following calculations:

K(1) =
1

2
Ω(ω(tk)) (12a)

K(2) =
1

2
Ω(ω(tk +

3

4
∆t)) (12b)

K(3) =
1

2
Ω(ω(tk +

17

24
∆t)) (12c)

qk+1 = exp

(

24

17
∆tK(3)

)

exp

(

−
2

3
∆tK(2)

)

exp

(

13

51
∆tK(1)

)

qk (12d)

The state-independent Lie algebra is determined for each of the 3 stages in Eqs. (12a)-(12c) and the integrated
state qk+1 is determined by a weighted application of their exponential maps using Eq. (12d). Coefficients for
a fourth order algorithm, here denoted by CG4, have been determined by Jackiewicz et. al using least-squares
minimization.13 These coefficients are provided in Table 5. Note that the fourth order CG algorithm requires
five stages (s = 5). The third and fourth order CG algorithms consisting of Eq. (10) with the respective
coefficients listed in Tables 4 and 5 are implemented in the following section and compared with the above
RK methods.

Table 5. 5-Stage CG413

a21 = 0.8177227988124852 b1 = 0.1370831520630755

a31 = 0.3199876375476427 b2 = −0.0183698531564020

a32 = 0.0659864263556022 b3 = 0.7397813985370780

a41 = 0.9214417194464946 b4 = −0.1907142565505889

a42 = 0.4997857776773573 b5 = 0.3322195591068374

a43 = −1.0969984448371582 c1 = 0.0

a51 = 0.3552358559023322 c2 = 0.8177227988124852

a52 = 0.2390958372307326 c3 = 0.3859740639032449

a53 = 1.3918565724203246 c4 = 0.3242290522866937

a54 = −1.1092979392113565 c5 = 0.8768903263420429

IV. Approach Comparison

The torque-free motion of some rigid body is considered as a test case. The system state consists of its
attitude, which is parameterized by q, and its angular rate, ω. The state equations are then the quaternion

5 of 10

American Institute of Aeronautics and Astronautics



kinematics and the angular dynamics:

q̇ =
1

2
Ω(ω)q (13a)

Jω̇ = −[ω×]Jω (13b)

Despite considering the torque-free case in which the angular rate too belongs to a Lie group, the angular
rate is not integrated using the geometric approach. This is because most applications do not conserve
angular momentum. In practice, the angular dynamics are typically

Jω̇ = −[ω×]Jω + τ(q,ω) (14)

which requires a less restrictive approach. Therefore, when the CG approach is employed, the angular
rate ω is integrated using the associated RK algorithm consisting of Eqs. (7a)-(7c) with the CG algorithm
coefficients. For example, for the s-stage CG approach, we have the following algorithm

ω(1) = ωk (15a)

k(1) = −J−1[ω(1)×]Jω(1) (15b)

K(1) =
1

2
Ω(ω(1)) (15c)

...

ω(i) = ωk +

s−1
∑

j=1

aij∆tk
(j) (15d)

k(i) = −J−1[ω(i)×]Jω(i) (15e)

K(i) =
1

2
Ω(ω(i)) (15f)

ωk+1 = ωk +∆t

s
∑

i=1

bik
(i) (15g)

qk+1 = exp(∆t bsK
(s)) · · · exp(∆t b1K

(1))qk (15h)

which employs the appropriate CG coefficients. This “mixed” integration scheme is valid since the CG
coefficients, as highlighted earlier, along with Eqs. (7a)-(7c) belong to the family of RK algorithms.5 Unlike
in Eq. (6) where the appearance of ω lead to non-autonomous kinematics in q, the dynamic system in Eq. (13)
is autonomous and the time variable does not appear explicitly in the integration algorithms.

The RK algorithms are applied directly to the state

x =
[

qT ωT

]T

(16)

with all appearances of the state q in Eq. (7) replaced by the appended state x defined in Eq. (16) and the
function f in Eq. (6) is augmented to

f(x, t) = f(x) =

[

1
2Ω(ω)q

−J−1[ω×]Jω

]

(17)

A. Simulation Precisions

For simulations, the inertia tensor J , the initial quaternion q0 = q(0) and the initial angular rate ω0 = ω(0)
are taken to be

J = diag(200, 200, 100)≡ diag(JT , JT , J3) (18a)

q0 =
[

0 0 0 1
]T

(18b)

ω0 =
[

0.05 0 0.01
]T

(18c)
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The system and initial conditions described by Eqs. (13) and (18) describe torque-free motion of an
axisymmetric rigid body.14 A closed-form solution for both q(t) and ω(t) is readily available for this case.8

The angular rate is given by8, 14

ω1(t) = ω01 cos(ωnt) + ω02 sin(ωnt) (19a)

ω2(t) = ω02 cos(ωnt)− ω01 sin(ωnt) (19b)

ω3(t) = ω03 (19c)

where the ω0i are the components of ω0 and the body nutation rate is

ωn = ω03(JT − J3)/JT (20)

The solution in Eqs. (19) and (20) is easily obtained since the third component becomes decoupled and the
first two components reduce to a simple harmonic oscillator. The quaternion solution can now be expressed
as

q(t) = y(t) ⊗ q0 (21)

where y(t) is given by8

y(t) =











h01 cos(α) sin(β) + h02 sin(α) sin(β)

h02 cos(α) sin(β) − h01 sin(α) sin(β)

h03 cos(α) sin(β) + sin(α) cos(β)

cos(α) cos(β)− h03 sin(α) sin(β)











(22)

with the definitions

α =
1

2
ωnt (23a)

β =
1

2
ωit (23b)

h0 = H0/‖H0‖ (23c)

In Eq. (23b), ωi = H/JT is the inertial nutation rate and in (23c), H0 = Jω0 is the initial angular momentum
vector. The quaternion solution in Eqs. (21)-(23) can be obtained by applying Floquet theory. Since the
system coefficients for the q state kinematics in Eq. (13a) are P -periodic, where P = 2π/ωn, a fundamental
matrix solution can be found using its Floquet representation.15 This in turn allows explicit calculation of
the state transition matrix16 and we obtain Eqs. (21)-(23).

B. Results

Third and fourth order RK and CG algorithms are used to integrate Eqs. (13) and (18). These algorithms
were provided in Section III. The RK algorithms use the coefficients in Tables 2 or 3 and the CG algorithms
follow Eq. (15) and use the coefficients in Tables 4 or 5. The norm errors throughout a four-hour time interval
are shown in Figure 1 for four different time steps; respectively, ∆t = 0.01 s, 0.1 s, 1 s and 10 s.

Figures 1(a) and 1(b) show that with time-steps of ∆t = 0.01 s and 0.1 s, the RK4 better preserves the
quaternion norm over the CG4 by at least 4 orders of magnitude and by approximately 2 orders of magnitude,
respectively. For ∆t = 0.01 s in Figure 1(a), the improvement is by “at least” 4 orders of magnitude since
machine precision is reached. For these particular simulations, the floating point spacing from one is 2−52

which limits the precision to which the norm error can be calculated. However, the CG3 performs comparably
with the RK3 algorithm in Figure 1(a) and better than it for ∆t = 0.1 s as is clear in Figure 1(b).

For the larger time-steps of ∆t = 1 s and 10 s, respectively Figures 1(c) and 1(d), significant improvement
is seen with both the third and fourth order CG algorithms. In particular, there is a 4 order of magnitude
improvement between the RK4 and CG4 algorithms for ∆t = 1 s and over 10 orders of magnitude when
∆t = 10 s. Between the CG3 and RK3 algorithms, there is more than 10 orders of magnitude improvement
for ∆t = 1 s and more than 12 for ∆t = 10 s. It may appear peculiar, especially for ∆t = 0.1 s and 1 s,
that the CG3 out performs the CG4 algorithm in Figure 1. However, it is by construction that the CG
algorithm maintains the quaternion norm, not by its order of accuracy. The CG4 suffers from considerable
more machine precision and round-off error accumulation than the CG3 primarily since the CG4 has five
stages compared with three stages for the CG3.
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(d) ∆t = 10 s

Figure 1. Quaternion Norm Errors Over Time, t ∈ [0, 4] Hours Using the Third and Fourth Order RK and CG
Algorithms.

In general, results from Figure 1 show that as the time step is sufficiently decreased, the classical RK
methods maintain the quaternion norm at least as well as the CG algorithms. Though this is observed in
practice, it is important to acknowledge that accumulated machine and round-off error plays an important
role. The added calculations for the matrix exponentials in Eq. (11) and in the case of the CG4, additional
stages, causes error to accumulate more rapidly.

Now the accuracy of the RK and CG algorithms is considered. Using the closed-form solution for Eqs. (13)
and (18), the true error in using each algorithm can be computed.8 Define first the following error quaternion:

δqk = qk ⊗ q̄−1
k (24)

where qk is the quaternion obtained by numerical integration and q̄k is the true quaternion at time t = k∆t

obtained from the closed-form solution in Eqs. (21)-(23). Defining δq =
[

δ̺T δq4

]T

, consider also the

small angle approximation: δ̺ ≈ 1
2δα where

δα =
[

δφ δθ δψ
]T

(25)

is the roll, pitch, and yaw error vector for any rotation sequence.7 The maximum value of each roll, pitch,
and yaw angle component obtained during the 4-hour simulation is used as a measurement of error.
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No significant difference is observed in the accuracy between the RK3 and RK3n or between the RK4
and RK4n algorithms. This validates the brute-force quaternion normalization that is used in practice, for
example in the quaternion-based extended Kalman filter for attitude determination.7 Therefore, accuracy
results are shown only for the RK3n and RK4n approaches and not for their standard counterparts.
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Figure 2. Max Euler Angle Errors Using the RK3n, CG3, RK4n and CG4 Algorithms.

The maximum angle errors obtained during the 4-hour simulation time interval are shown as a function
of ∆t for each algorithm in Figure 2. Figures 2(a), 2(b), and 2(c) show respectively the maximum roll, pitch,
and yaw angle errors. The advantage in using the CG4 method is that approximately 2 orders of accuracy
improvement in the attitude angle errors is observed for all considered time-steps greater than 0.01 s. The
CG3 formulation employed yields slightly larger angle errors than the RK3 for ∆t = 10 s but it obtains
approximately the same accuracy for the smaller time-steps.

Combining the above observations, the simulations suggest that there is no advantage in using the CG
algorithms considered for ∆t = 0.01 s. The CG4 performs worse than the RK4 in terms of both norm
preservation and accuracy. While the performance of the CG3 algorithm is about the same as that of the
RK3, both in terms of norm preservation and accuracy, the added computational cost is a clear disadvantage.
However, for the larger time steps considered, the CG3 has improved norm preservation over the RK3
although without any accuracy improvement. Although, with ∆t = 10 s, CG3 accuracy becomes poorer
than that of the RK3. Thus, despite the fact that the third order Crouch-Grossman algorithm showed
significant improvement in norm preservation over the classical Runge-Kutta approach for larger time steps,
a brute-force normalized Runge-Kutta can achieve this without accuracy degradation. On the other hand, for
larger time steps, the CG4 significantly improved accuracy over the RK4, but it improved norm preservation
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only in the cases of ∆t = 1 s and 10 s.

V. Conclusion

The application of Crouch-Grossman algorithms to the integration of quaternions was successfully demon-
strated. Results obtained using both third and fourth order Crouch-Grossman algorithms were compared
with those of the third and fourth order Runge-Kutta methods. Additionally, a Runge-Kutta algorithm with
brute-force normalization was employed to determine the effect of projection on result accuracy.

It was found that Crouch-Grossman algorithms did not always outperform classical Runge-Kutta methods
as might be expected. In particular, for the smallest time step considered, the third order Crouch-Grossman
algorithm yielded no advantages over its Runge-Kutta counterpart to justify the added computational cost;
further, the fourth order Crouch-Grossman algorithm performed worse than the fourth order Runge-Kutta
method both with respect to norm preservation and accuracy. Additionally, augmenting a Runge-Kutta
method did not noticeably affect accuracy. This result validates what is done in practice and serves also to
detract from the Crouch-Grossman approach.

A clear advantage was observed in using the fourth order Crouch-Grossman algorithm. For larger time
steps, significant improvements in accuracy were observed and the quaternion norm was preserved to within
high precision. In the case of the largest time step considered, the quaternion norm was preserved to within
machine precision. As a result of these findings, the fourth order Crouch-Grossman algorithm employed
in this work has potential in applications that would benefit from larger integration time-steps and where
accuracy is important. Propagations over days or weeks can be achieved more rapidly when larger time steps
are permitted.
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