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PARTICLE FILTERING LIGHT CURVE BASED ATTITUDE
ESTIMATION FOR NON-RESOLVED SPACE OBJECTS

Richard Linares*, John L. Crassidis’, Moriba K. Jah*

This paper discusses the development of a particle filteatfitude and angular
rate estimation of a space object using light curve obsemnst The particle filter
approach used is based on the generalized Rodrigues paran@RPs) local
error representation. The global state used is the quatetmiavoid singularity in
the attitude states. Uniform quaternions are generatedgmaimate a uniform
distribution of rotation states. The approach is testeth witmulation scenarios
and evaluated based error performance and converge rate.

MOTIVATION

In recent years space situational awareness, which is moatavith collecting and maintaining
knowledge of all objects orbiting the Earth, has gained mattdntion. The U.S. Air Force collects
the necessary data for space object catalog developmemnha@ntenance through a global network
of radars and optical sensors. Due to the fact that a limitedler of sensors are available to track
a large number of space objects (SOs), the sparse datatedllewist be exploited to the fullest
extent. Various sensors, such as radars, exist for SO stiteagion, which typically includes
position, velocity, and a non-conservative force paramété, analogous to a ballistic coefficient.
Another piece of useful information is the estimation of 8f@pe of an object, which requires
knowledge of the attitude of the SO.

Shape estimation is an important issue in the observati®Qd, because the shape influences
the dynamics of the object and may enables unique spacet atgadification, beyond just using
the object’s translational states. There exists a numberethods for estimating the shape of an
object. These methods vary in the sensor type used, teahnigpd to resolve shape, and effective
ranges for proper shape resolution. Radar-based methedsbean extensively used for shape
estimation, which include radar cross-sectioning apgregcand range Doppler interferometfy.
These techniques were first developed in the field of plapettar astronomy to estimate the
shape of natural satellit€dyut were later applied to the imaging of artificial Earth tirlg satellites.
These methods are limited to SOs that are larger than thesadaelength. SOs can be imaged
in low-Earth orbits that are much larger in dimension thamwavelength of the radar signal. To
image SOs smaller and farther than these ranges requinepaserful radar devices, making these
economically unattractive.

“Postdoctoral Research Associate, Space Science and afptis, ISR-1, Los Alamos National Laboratory, MS D466,
Los Alamos, NM 87545.

fCUBRC Professor in Space Situational Awareness, Depattofidfiechanical and Aerospace Engineering, University at
Buffalo, The State University of New York, Buffalo, NY 14260

Senior Research Engineer, Air Force Research Laborat@godate Fellow AIAA.



Laser radar-based (LADAR) methods have also been usedittagsthe shape of SOs. LADAR
provides a three-dimensional scan of the object, which eanlve shape geometry at ranges of 1
km, returning a cloud of points of the measured relative tposiof an object. Referencé uses
LADAR scans to perform a least squares fit of the LADAR retumgreviously assembled point
cloud models to estimate the shape of an SO. Referdrisvelopes a filter approach to simulta-
neously estimate dynamic states, geometric shape, andmuaks parameters of a satellite using
multiple observations with LADAR sensors. In R8&fa probabilistic map of the SO is constructed
using a sensor uncertainty model and the dynamics expedelng the SO to estimate its shape.
Using well modeled dynamical relationships of the SO presiénhancements to be implemented
within a filter architecture in this shape estimation apphoa

Resolved images have been used to estimate the size and$lsapalites as weff. These meth-
ods work either directly with the pixels of the images or asedito identify features of the SO.
Features, such as corners, edges and markers, are locdtedcked temporally to estimate higher
level motion and the structure of the rigid boflylhe feature-based methods rely on continuously
identifying and tracking higher level traits of the SO byngsia Kalman filter to estimate feature
location and motion parameters. Although these method®a&st the motion of features they do
not by themselves provide a detailed estimate of the shapeeobbject and only give a sparse
set of feature points of the object. Pixel-based methodsaelpixel-level information, and use
the shading, texture and optical flow of the images to esértfa shape of an object at each time
step using a monocular camera. Since these methods relyehlgiel computations they typi-
cally involve very high-dimensional states and therefoeevery computationally expensive. These
methods are also very sensitive to pixel-level detail ardeasily corrupted by unpredictable light
intensities, reflective material and wrinkled surfaceseylrequire high resolution of the object to
resolve meaningful shape estimates, and therefore aresiehtive for space-based sensors and or
high resolution ground-based telescopes.

Some powerful ground-based telescopes, such as the A Mauai Optical and Supercomputing
site Advanced Electro-Optical System, can resolve SOs aadHubble Space Telescope and the
International Space Station to very high detail, but mogéab are too small and or too distant
(making them dim) to lend themselves to ground-based redataaging® For example operational
SOs in geosynchronous orbits and “micro” and “nano” saésllare too small to be resolved using
ground-based optical observations. Angular measurenoéttiese smaller objects are still made to
provide their coordinates as they traverse the sky. Althabhg amount of light collected from these
objects is small, information can still be extracted frors data which can be used to resolve their
shapes.

Light curves (the SO temporal brightness) have also beahtosestimate the shape for an object.
Light curve approaches have been studied to estimate tpe simal state of asteroi@s? Reference
11 uses light curves and thermal emissions to recover the-thmeensional shape of an object
assuming its orientation with respect to the observer isskndrhe benefits of using a light curve-
based approach over the aforementioned others is that d@tisnmited to larger objects in lower
orbits and it can be applied to small and dim objects in higinbits, such as geosynchronous. Here
light curve data is considered for shape estimation, wigelseful because it provides a mechanism
to estimate both position and attitude, as well as theiraethe rates?13141516,17

There are several aspects of using light curve data (terhplootometry) that make it particularly
advantageous for object detection, identification andkingc Light curve data are the time-varying
sensor wavelength-dependent apparent magnitude of e(iexgghotons) scattered (reflected) off



of an object along the line-of-sight to an observer. Becdluseapparent magnitude of the SO is a
function of its size, orientation, and surface materiapgnties, one or more of these characteristics
should be recoverable from the photometric data. This ahimahe detection and identification of
an SO after a catalog of spacecraft data with material ptigseis developed, and may also prove
to be powerful for never-seen-before objects.

Previously, shape estimation has been investigated usbamla of UKFs in a Multiple Model
Adaptive Estimation (MMAE) approaclf. The MMAE approach was able to determine the most
probable model within a bank of possible models while ediimgerotational and translation states
with each UKF within the bank. Referend® limited the size of the covariance of the attitude
states due to the nonlinearity of the measurements. Therduwwork proposes a particle filter to
over come this issue and account for the nonlinearity wiplgreximating a uniform distribution
over attitude states. Other studies have looked at addidigj@thl states to the estimation process,
including mass? general shap¥, and relative inerti® parameters. With the addition of these
additional parameters new nonlinearities are producedtfzr@fore a method for accounting for
nonlinear errors and non-Gaussian pdfs is required.

This studies a particle filtering approaches applied td liginve processing. The approach used in
this work in based on referen@8. Recovering of attitude and angular velocity states witfigant
accuracy is shown in this paper. The main benefit of this pape ability of approximating non-
Gaussian pdfs. The performance of this strategy is denaiadtvia simulated scenarios.

The organization of this paper is as followings, first theotation dynamic and kinematic equa-
tions a briefly outlined and the faceted shape models usdakisimulations are then discussed.
Next, the light curve model used in this work is presentedlloling this a general particle fil-
ter discussion is provide followed by GRP based attitudéigarfilter outline. Finally, simulation
examples are shown along with conclusions.

ORIENTATION DYNAMICS AND KINEMATICS

In terms of the quaternion, the attitude matrix is given by

A(q) =Z"(q)¥(q) 1)
where
E(q) = [q‘*l?’x_‘”’;T[qu (2a)
with
0 —asg a
[ax]=|az 0 —a1 3)
—an aq 0

for any genera8 x 1 vectora defined such thgax]b = a x b. This representation is constrained
since the quaternion is of unit length and therefqfey = 1. The kinematics dynamics are given



by a first-order differential equation:

4= =@ (42)

wg/[ = Jso < [WB/I ] ‘]SO"‘)E/I) (4b)
The state vector using for this work is given by
T
x=[af" f) | Q
where the shape of the SO and the surface reflection paranaeteassumed known.

LIGHT CURVE MODEL

For this work it is assumed that an optical site records thgnmiade of the brightness of the space
object (SO) and these measurements are used to estimateethtion of the SO. The brightness
of an object in space can be modeled using a Phong light @ifiusodel® This model is based on
the bidirectional reflectance distribution function (BRD#hich models light distribution scattered
from the surface due to the incident light. The BRDF at anynpon the surface is a function of
two directions, the direction from which the light sourcégorates, and the direction from which
the scattered light leaves the observed surface. The moésefi [L9 decomposes the BRDF into
a specular component and a diffuse component. The two tarmdagive the total BRDF

Ptotal(i) = Pspec(i) =+ pdiff (Z) (6)

The diffuse component of Eg6), paif (¢) represents light that is scattered equally in all direction
(Lambertian). The specular component of B}, psped ) represents light that is concentrated about
some direction (mirror-like). Referenc&9] develops a model for continuous arbitrary surfaces but
simplifies for flat surfaces which is employed in this work eféfore, the total observed brightness
of an object becomes the sum of the contribution from eadttfac

Under the flat facet assumption the specular term of the BRi2Brne$?

Ny (U, -u Ny uy -uy, (2 2
peved i) — V(nu +1) (ny + 1) (ul (7) - uf ) (O (= (s (0)%) fots
spe: 8 u{L(l) usun+ ul I'(i)-u obs (u{L(z) usun) uI obs) reflec
(7a)
where the Fresnel reflectance is given by
Freflec(1) = Rspedi) + (1 - Rspec(i)) (1 - u£un' uflz(l))5 (8)

The parameters,, andn, of the Phong model dictate the direction (locally horizbwtavertical)
distribution of the specular terms.

The diffuse term of the BRDF for a single facet is

pift (1) = <%ﬁ(2)> (1 — Rsped?)) [1 — <1 _ Mv 5] [1 - (1 _ ufz(i)2’ uébs>5



The apparent magnitude of a SO is the result of sunlight tafpoff of its surfaces along the line-
of-sight to an observer. First, the fraction of visible $ght that strikes an object (and not absorbed)
is computed by

Fsun(i) = Csun,visptotal(i) (ui(l) : U£un) (10)

where Csunvis = 455 W/m? is the power per square meter impinging on a given object due t
visible light striking the surface. If either the angle betm the surface normal and the observer's
direction or the angle between the surface normal and Sentdin is greater than/2, then there

is no light reflected toward the observer. If this is the céisen the fraction of visible light is set to
Fsun(7) = 0. Next, the fraction of sunlight that strikes an object tisateflected must be computed:

Fsun(i).A(4) (uﬁ(z) ) uébs)

e ah

Fops =
The reflected light of each facet is now used to compute tlaé pbioton flux, which is measured by

an observer:
N
Z Fobs(i)
i=1

wherevcpp Is the measurement noise associated with flux measured bybas€gsor.

F= + vcbD 12)

PARTICLE FILTER

Particle filtering approaches are based on Monte Carlo rdsthehere a probability distribution
is represented by set of randomly selected particles. Ukmfact that the system in question can be
solved for an individual set of initial conditions, the sidun for a distribution of initial conditions
are approximated by the solutions of a set of particles sgmting the initial distribution. Giveiv
independent and identically distributed random samp!ésdrawn fromp(x), i = 1,...,N the
distribution can be approximated byz) ~ (1/N) >_~, 6(x — ) and an arbitrary integral (or
expectation) with respect fgx) can be approximated by

/f(a:)p(a:)da: = %Z f(x®) (13)

Perfect Monte Carlo sampling assumes the samples are diasatlydfrom the distributionp(x)
and that there are enough particles to represent the make dfstribution. It can be shown that
asN, — oo, the approximation given by Eql®) approaches the true denstf/In the case of the
Particle filter each particle is assigned a weight) o« p(z?), which represents the probability
of that particle occurring. Then the weights are normaligesh thathV w® = 1. A particle
filter involves four steps, namely, prediction, update (ection), resampling and regularization
(roughening), all of these steps constitute a filter cycle.

Predictor

The sets of particles_ and t_heir associated weights refiegehe pdf att;, andt;,, are denoted
by {mg),w,(j)} and {acg}rl,wgil}, respectively, whereé = 1,..., N. The particles at time;, are
propagated through the following equation with their wésglnchanged:

2 = £z, w) (14)



Then the particle at time, ., {"”/E:i}rpwml} represents the forecast pdf, whe¥esamplesw(®

of the process noise are drawn accordingpta), denoted byw,i) ~ plwg),? = 1,...,N,

is the normalized weight of the particle. The process narsand the measurement noiseare
assumed to be zero-mean white noise sequences. Althouglaussi@an assumptions are needed,
the distributions of the mutually independeng, w, andwv, denoted byp(x,), p(w) andp(v),
respectively, are assumed to be known and Gaussian for thils When, the posterior density &t
can be approximated as

~ > w's(m(t) - @'(t) (15)
=1

whered(-) represents the direc delta function, which returns onericargument of zero and zero
otherwise. Equationlf) represents a discrete weighted approximation to the tosegor.

Corrector

When measurements are made available, the pdf is updatgodying the weights of each par-
ticle using the likelihood of the measurement given eachiglar At the update step the weight
associated with each particle is updated based on thehiai functionw’), = w{”p(gy|z\"):
i 4
tion has a simple formp(y,41]x®) = p(y; — h(a:,(j))). Then weight update for each particle is
based on the likelihood function and given by

wherew, ;. denotes the unnormalized weights. If additive noise is icemed the likelihood func-

w) = w? pFrled) ) (16a)
(i)
(7)
w = Tk (16b)
‘ ZN 1 wl(;)

where the likelihood functiom(yk\xs)) depends on the noise process of the observation directly.

Resampling and Regularization

The variance associated with the weights in sequential itapoe sampling can only increase
over time and eventually all but one particle will have ngilie weight?® To overcome this de-
generacy problem resampling is used to discard obsoletielparwith small weights and multiply
partlcles with large weight&' The resampling procedure starts by drawing sampldsnes from

{wk—i-l’ wk—i—l} to obtainN equally weighted partlcles{mkﬂ, 1/N}.

Since resampling duplicates the particles with large wsigienerating many identical particles
may greatly decrease the number of distinct particlesmpbag is usually followed by a regular-
ization step. The regularization step adds small noisegdadbampled particles to increase particle
diversity?® A small independent jitter drawn from a Gaussian distrifnutis added to the identical
particles to increase diversity.

ATTITUDE PARTICLE FILTER

The attitude state errors are represented as error GRRsng$u a minimum parameter repre-
sentation for the attitude state ert8rTo within first order, the state error covariance of the it
is invariant whether the errors are parameterized usinteuians or GRP$? Therefore the atti-
tude state error-covariance can be directly decomposeceimbr GRP particles for use in the PF.



The particles corresponding to the error GRPs are first ct@uénto error quaternions so that the
quaternion particles can be computed. The error quaterdiemoted bydq, (i), associated with
thei" error GRP particle is computed By

dg;, (i) = " [a+dqy, (i

—allX )P+ £/ 12+

1 X (4) (17a)

opy-
1 —a?)|]x;” (0)|[?

)
(

(1) = b
201, 2+ P62 (o
- (5]

wherea is a parameter from 0 to 1 arydis a scale factor, which is often set fo= 2(a + 1) so that
the attitude error covariance is that of the small roll, Ipismd yaw angle errors. Here it is noted
that the subscript and superscripB3 in q? and its estimates are omitted in this and the following
sections for clarity. The™ quaternion particle is given by a rotation &ff, (i) about thea priori
estimate:

q;, (i) = dq;, (1) ® q;, (0) (18)
where
d®q=[¥(q) d]q (19)

After propagation, the particles for the error GRP statexamputed with the propagated attitude
particles. The estimated mean quaternigp, , (0), is stored, and error quaternions corresponding
to each propagated quaternion particles are computed as:

A . A . N —1
5qk+1(2) = qk+1(l) ® [qk+1(0)] (20)
where the notation for the conjugate quaternion is defined as
-1_| —@

at=] 2] 1)

Using the result of Eq.20), the error GRP sigma points are computed as

00y, (1)
Opjpq (i) = f———"= (22)
k+1 a+ 5q4k+1 (Z)

The particle filter approach used in this work is based on tweerplized Rodrigues parameters
local error representation. The global state used is thieruian to avoid singularity in the attitude
states. Uniform quaternions are generated to approximatg@m distribution of rotation states.

SIMULATION RESULTS

Using light curves for satellite orientation and surfaceapaeter estimation have many inherent
challenges. This section studies this problem by consigemvo examples; the first example is
a simplified state model to highlight some of these challergied the second example is a full
3 degree of freedom rotation model. The simple model usesoadimensional state with one
orientation angle and one angular rate. This simplified rhizdesed to show the challenges that
object symmetry poses to light curve process. Using thiplied model a Particle Filter (PF)
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Figure 1. Test Case Definition

technique is used to study the light curve processing pnoblehe benefit of studying this simplified
system is that one can remove the nonlinearities from thamjmequations and therefore isolating
the nonlinearity and ambiguity in the measurement equsiioa the light curve model. The second
example considers a full orientation state model thatsnegéis the 3 degree of freedom orientation
state of the Space Object using a PF with the local GRP reqes® discussed earlier.

Example 1: Test Case Definition

To study the light curve process problem in detail a simglifieodel is considered. The model
consists of triangular prisms, square prisms and regubaidanal prisms. All shape models con-
sidered in this section are orientated such tha®helirection is aligned with inertiat axis. The
shape model are allowed to rotate about thiRjrbody axis. The parameters included in the state
vector are thé) andw, the between th@&; andx and the angular velocity respectively. Figure
shown the geometry of the simple test case. The Sun vaétqand observer direction vectar,
are defined to lie in th& — y plane. The dynamic model for this simple test case is given by

0=w (23a)
w=0 (23b)

Then the system and measurement equations can be writtea foliowing form:

x = Ax (24a)
y=h(x,p)+v (24b)
where
0 1
A= [ 00 } (25)

andh (x, p) is the nonlinear light curve measurement function grid a vector of the light curve
model parameter, such as shape and surface parameters.

Figures2 and 3 show the simulation results for the PF applied to exampleigurg 2 show a
histogram of the particles evolving over time. From this fegwe can see the solution is bimodal



and consist of two distinct peaks. This is due to the fact ttege has symmetries and these two
peak represent likely orientation based on the data. Figuglegows these two peaks at different
times. Form this figure it can be seen one of the peaks redoc®@ze as more measurements are
processed. The new observations reduce the likelihoodhtsasecond orientation is correct. This
shows the benefit of the PF the non-Gaussian and bimodabdigbns that can arise for the light
curve processing problem.
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Figure 2. Histogram of Attitude Particles

Example 2: Light Curve Based Attitude Estimation

This section discusses a simulation example of the use d?fhapproach for space object char-
acterization. In this section the light curve models disedsearlier are used to simulate an object
in a near Geosynchronous Orbit (GEO) orbit. The model usad-éstangular prism and the same
initial attitude and positions states or used for this caseas used earlier. The orbit is assumed
know and only the attitude and angular velocity is estimafBue simulation conditions are given

by

Geographic position of the ground sitedisNorth, 172° West with0 km altitude

The orbital elements are given ly = 25864.16932 km, e = 0.743, ¢ = 30.0083 deg,
w = = 0.0 deg andM, = 91.065 deg

The initial time of the simulation is Mag, 2007 at 5:27.55 UTC

Initial quaternion:q? = [1/v2 0 0 1/v/2]T

A constant rotation rate, defined as the body rate with re$pdoe inertial frame (represented
in body coordinates) is used given hgg/l =10 0.00262 0]” rad/s

For this simulation scenarios, measurements of apparegnitnde are produced using zero-mean
white-noise error processes with a standard deviation@3f for magnitude. The initial errors for
the states ar80 deg for all three attituded,, 000 deg/hr for the rotational rate. The time interval
between the measurements is set seconds and data are simulated fdrour.

The simulation results for the PF approach applied to lightve measurement processing is
shown in Figureb. This figure include both the attitude and angular velocgtneation error for
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the scenario used. From Figurge&@) and5(c) we can see that the PF approach preforms well in
estimating both the angular velocity and attitude statesther investigation is required both from
the example shown in this section, but it can be concludedtitieaPF Filtering approach is well
suited for nonlinear problems and therefore for space bbjearacterization.

CONCLUSION

In this paper, a PF estimation scheme using light curve meamsants was presented and used to
estimate attitude and angular velocity of a space objec} (8t an assumed shape. Two simulation
cases were considered, the first case was a simplified statel raohighlight the challenges an
object with symmetry poses to light curve process. The stoase was used a full orientation
state model to estimation the 3 degree of freedom oriemtatiate of the Space Object. The light
curve model used was based on the Ashikhmin-Shirley BRDFsaod/ed good performance for
simulated and real data examples. Simulation resultsatelicthat the performance PF for the light
curve processing problem is promising.
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