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PARTICLE FILTERING LIGHT CURVE BASED ATTITUDE
ESTIMATION FOR NON-RESOLVED SPACE OBJECTS

Richard Linares∗ , John L. Crassidis† , Moriba K. Jah‡

This paper discusses the development of a particle filter forattitude and angular
rate estimation of a space object using light curve observations. The particle filter
approach used is based on the generalized Rodrigues parameters (GRPs) local
error representation. The global state used is the quaternion to avoid singularity in
the attitude states. Uniform quaternions are generated to approximate a uniform
distribution of rotation states. The approach is tested with simulation scenarios
and evaluated based error performance and converge rate.

MOTIVATION

In recent years space situational awareness, which is concerned with collecting and maintaining
knowledge of all objects orbiting the Earth, has gained muchattention. The U.S. Air Force collects
the necessary data for space object catalog development andmaintenance through a global network
of radars and optical sensors. Due to the fact that a limited number of sensors are available to track
a large number of space objects (SOs), the sparse data collected must be exploited to the fullest
extent. Various sensors, such as radars, exist for SO state estimation, which typically includes
position, velocity, and a non-conservative force parameter, B∗, analogous to a ballistic coefficient.
Another piece of useful information is the estimation of theshape of an object, which requires
knowledge of the attitude of the SO.

Shape estimation is an important issue in the observation ofSOs, because the shape influences
the dynamics of the object and may enables unique space object identification, beyond just using
the object’s translational states. There exists a number ofmethods for estimating the shape of an
object. These methods vary in the sensor type used, technique used to resolve shape, and effective
ranges for proper shape resolution. Radar-based methods have been extensively used for shape
estimation, which include radar cross-sectioning approaches1 and range Doppler interferometry.2

These techniques were first developed in the field of planetary radar astronomy to estimate the
shape of natural satellites,3 but were later applied to the imaging of artificial Earth orbiting satellites.
These methods are limited to SOs that are larger than the radar’s wavelength. SOs can be imaged
in low-Earth orbits that are much larger in dimension than the wavelength of the radar signal. To
image SOs smaller and farther than these ranges requires very powerful radar devices, making these
economically unattractive.
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Laser radar-based (LADAR) methods have also been used to estimate the shape of SOs. LADAR
provides a three-dimensional scan of the object, which can resolve shape geometry at ranges of 1
km, returning a cloud of points of the measured relative position of an object. Reference4 uses
LADAR scans to perform a least squares fit of the LADAR returnsto previously assembled point
cloud models to estimate the shape of an SO. Reference5 developes a filter approach to simulta-
neously estimate dynamic states, geometric shape, and massmodel parameters of a satellite using
multiple observations with LADAR sensors. In Ref.5 a probabilistic map of the SO is constructed
using a sensor uncertainty model and the dynamics experienced by the SO to estimate its shape.
Using well modeled dynamical relationships of the SO provides enhancements to be implemented
within a filter architecture in this shape estimation approach.5

Resolved images have been used to estimate the size and shapeof satellites as well.6 These meth-
ods work either directly with the pixels of the images or are used to identify features of the SO.
Features, such as corners, edges and markers, are located and tracked temporally to estimate higher
level motion and the structure of the rigid body.7 The feature-based methods rely on continuously
identifying and tracking higher level traits of the SO by using a Kalman filter to estimate feature
location and motion parameters. Although these methods estimate the motion of features they do
not by themselves provide a detailed estimate of the shape ofthe object and only give a sparse
set of feature points of the object. Pixel-based methods rely on pixel-level information, and use
the shading, texture and optical flow of the images to estimate the shape of an object at each time
step using a monocular camera. Since these methods rely on pixel-level computations they typi-
cally involve very high-dimensional states and therefore are very computationally expensive. These
methods are also very sensitive to pixel-level detail and are easily corrupted by unpredictable light
intensities, reflective material and wrinkled surfaces. They require high resolution of the object to
resolve meaningful shape estimates, and therefore are onlyeffective for space-based sensors and or
high resolution ground-based telescopes.

Some powerful ground-based telescopes, such as the Air Force Maui Optical and Supercomputing
site Advanced Electro-Optical System, can resolve SOs suchas Hubble Space Telescope and the
International Space Station to very high detail, but most objects are too small and or too distant
(making them dim) to lend themselves to ground-based resolved imaging.8 For example operational
SOs in geosynchronous orbits and “micro” and “nano” satellites are too small to be resolved using
ground-based optical observations. Angular measurementsof these smaller objects are still made to
provide their coordinates as they traverse the sky. Although the amount of light collected from these
objects is small, information can still be extracted from these data which can be used to resolve their
shapes.

Light curves (the SO temporal brightness) have also been used to estimate the shape for an object.
Light curve approaches have been studied to estimate the shape and state of asteroids.9,10 Reference
11 uses light curves and thermal emissions to recover the three-dimensional shape of an object
assuming its orientation with respect to the observer is known. The benefits of using a light curve-
based approach over the aforementioned others is that it is not limited to larger objects in lower
orbits and it can be applied to small and dim objects in higherorbits, such as geosynchronous. Here
light curve data is considered for shape estimation, which is useful because it provides a mechanism
to estimate both position and attitude, as well as their respective rates.12,13,14,15,16,17

There are several aspects of using light curve data (temporal photometry) that make it particularly
advantageous for object detection, identification and tracking. Light curve data are the time-varying
sensor wavelength-dependent apparent magnitude of energy(i.e. photons) scattered (reflected) off
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of an object along the line-of-sight to an observer. Becausethe apparent magnitude of the SO is a
function of its size, orientation, and surface material properties, one or more of these characteristics
should be recoverable from the photometric data. This can aid in the detection and identification of
an SO after a catalog of spacecraft data with material properties is developed, and may also prove
to be powerful for never-seen-before objects.

Previously, shape estimation has been investigated using abank of UKFs in a Multiple Model
Adaptive Estimation (MMAE) approach.16 The MMAE approach was able to determine the most
probable model within a bank of possible models while estimating rotational and translation states
with each UKF within the bank. Reference16 limited the size of the covariance of the attitude
states due to the nonlinearity of the measurements. The current work proposes a particle filter to
over come this issue and account for the nonlinearity while approximating a uniform distribution
over attitude states. Other studies have looked at adding additional states to the estimation process,
including mass,14 general shape,17 and relative inertia15 parameters. With the addition of these
additional parameters new nonlinearities are produced andtherefore a method for accounting for
nonlinear errors and non-Gaussian pdfs is required.

This studies a particle filtering approaches applied to light curve processing. The approach used in
this work in based on reference18. Recovering of attitude and angular velocity states with sufficient
accuracy is shown in this paper. The main benefit of this paperis the ability of approximating non-
Gaussian pdfs. The performance of this strategy is demonstrated via simulated scenarios.

The organization of this paper is as followings, first the orientation dynamic and kinematic equa-
tions a briefly outlined and the faceted shape models used in the simulations are then discussed.
Next, the light curve model used in this work is presented. Following this a general particle fil-
ter discussion is provide followed by GRP based attitude particle filter outline. Finally, simulation
examples are shown along with conclusions.

ORIENTATION DYNAMICS AND KINEMATICS

In terms of the quaternion, the attitude matrix is given by

A(q) = ΞT (q)Ψ(q) (1)

where

Ξ(q) ≡
[

q4I3×3 + [̺×]

−̺T

]

(2a)

Ψ(q) ≡
[

q4I3×3 − [̺×]

−̺T

]

(2b)

with

[a×] ≡





0 −a3 a2
a3 0 −a1
−a2 a1 0



 (3)

for any general3× 1 vectora defined such that[a×]b = a× b. This representation is constrained
since the quaternion is of unit length and thereforeqTq = 1. The kinematics dynamics are given
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by a first-order differential equation:

q̇ =
1

2
Ξ(q)ω (4a)

ω̇B
B/I = J−1

SO

(

−
[

ωB
B/I×

]

JSOω
B
B/I

)

(4b)

The state vector using for this work is given by

x =
[

qBT

I ωBT

B/I

]T
(5)

where the shape of the SO and the surface reflection parameters are assumed known.

LIGHT CURVE MODEL

For this work it is assumed that an optical site records the magnitude of the brightness of the space
object (SO) and these measurements are used to estimate the orientation of the SO. The brightness
of an object in space can be modeled using a Phong light diffusion model.19 This model is based on
the bidirectional reflectance distribution function (BRDF) which models light distribution scattered
from the surface due to the incident light. The BRDF at any point on the surface is a function of
two directions, the direction from which the light source originates, and the direction from which
the scattered light leaves the observed surface. The model in Ref. [19] decomposes the BRDF into
a specular component and a diffuse component. The two terms sum to give the total BRDF

ρtotal(i) = ρspec(i) + ρdiff (i) (6)

The diffuse component of Eq. (6), ρdiff (i) represents light that is scattered equally in all directions
(Lambertian). The specular component of Eq. (6), ρspec(i) represents light that is concentrated about
some direction (mirror-like). Reference [19] develops a model for continuous arbitrary surfaces but
simplifies for flat surfaces which is employed in this work. Therefore, the total observed brightness
of an object becomes the sum of the contribution from each facet.

Under the flat facet assumption the specular term of the BRDF becomes19

ρspec(i) =

√

(nu + 1) (nv + 1)

8π

(

uI
n(i) · uI

h

)nu(uI

h
·uI

u(i))
2+nv(1−(uI

h
·uI

v(i))
2)

uI
n(i) · uI

sun+ uI
n(i) · uI

obs− (uI
n(i) · uI

sun)(u
I
n(i) · uI

obs)
Freflect(i)

(7a)

where the Fresnel reflectance is given by

Freflect(i) = Rspec(i) +
(

1−Rspec(i)
) (

1− uI
sun · uI

h(i)
)5

(8)

The parametersnu andnv of the Phong model dictate the direction (locally horizontal or vertical)
distribution of the specular terms.

The diffuse term of the BRDF for a single facet is

ρdiff (i) =

(

28Rdiff (i)

23π

)

(1−Rspec(i))

[

1−
(

1− uI
n(i) · uI

sun

2

)5
][

1−
(

1− uI
n(i) · uI

obs

2

)5
]

(9)
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The apparent magnitude of a SO is the result of sunlight reflecting off of its surfaces along the line-
of-sight to an observer. First, the fraction of visible sunlight that strikes an object (and not absorbed)
is computed by

Fsun(i) = Csun,visρtotal(i)
(

uI
n(i) · uI

sun

)

(10)

whereCsun,vis = 455 W/m2 is the power per square meter impinging on a given object due to
visible light striking the surface. If either the angle between the surface normal and the observer’s
direction or the angle between the surface normal and Sun direction is greater thanπ/2, then there
is no light reflected toward the observer. If this is the case,then the fraction of visible light is set to
Fsun(i) = 0. Next, the fraction of sunlight that strikes an object that is reflected must be computed:

Fobs =
Fsun(i)A(i)

(

uI
n(i) · uI

obs

)

‖dI‖2 (11)

The reflected light of each facet is now used to compute the total photon flux, which is measured by
an observer:

F̃ =

[

N
∑

i=1

Fobs(i)

]

+ vCDD (12)

wherevCDD is the measurement noise associated with flux measured by a CCD sensor.

PARTICLE FILTER

Particle filtering approaches are based on Monte Carlo methods, where a probability distribution
is represented by set of randomly selected particles. Usingthe fact that the system in question can be
solved for an individual set of initial conditions, the solution for a distribution of initial conditions
are approximated by the solutions of a set of particles representing the initial distribution. GivenN
independent and identically distributed random samplesx(i) drawn fromp(x), i = 1, . . . , N the
distribution can be approximated byp(x) ≈ (1/N)

∑N
i=1 δ(x − x(i)) and an arbitrary integral (or

expectation) with respect top(x) can be approximated by

∫

f(x)p(x)dx ≈ 1

N

N
∑

i=1

f(x(i)) (13)

Perfect Monte Carlo sampling assumes the samples are drawn directly from the distributionp(x)
and that there are enough particles to represent the mass of the distribution. It can be shown that
asNa → ∞, the approximation given by Eq. (13) approaches the true density.20 In the case of the
Particle filter each particle is assigned a weight,w(i) ∝ p(x(i)), which represents the probability
of that particle occurring. Then the weights are normalizessuch that

∑N
i w(i) = 1. A particle

filter involves four steps, namely, prediction, update (correction), resampling and regularization
(roughening), all of these steps constitute a filter cycle.

Predictor

The sets of particles and their associated weights representing the pdf attk andtk+1 are denoted

by {x(i)
k , w

(i)
k } and{x(i)

k+1, w
(i)
k+1}, respectively, wherei = 1, . . . , N . The particles at timetk are

propagated through the following equation with their weights unchanged:

ẋ(i) = f(x(i),wi) (14)
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Then the particle at timetk+1, {x(i)
k+1, w

(i)
k+1}, represents the forecast pdf, whereN samplesw(i)

of the process noise are drawn according top(w), denoted byw(i)
k ∼ p(wk), i = 1, . . . , N ,

is the normalized weight of the particle. The process noisew and the measurement noisev are
assumed to be zero-mean white noise sequences. Although no Gaussian assumptions are needed,
the distributions of the mutually independentxo, w, andv, denoted byp(xo), p(w) and p(v),
respectively, are assumed to be known and Gaussian for this work. Then, the posterior density atk
can be approximated as

p(x(t)) ≈
i

∑

i=1

wiδ(x(t) − xi(t)) (15)

whereδ(·) represents the direc delta function, which returns one for an argument of zero and zero
otherwise. Equation (15) represents a discrete weighted approximation to the true posterior.

Corrector

When measurements are made available, the pdf is updated by updating the weights of each par-
ticle using the likelihood of the measurement given each particle. At the update step the weight
associated with each particle is updated based on the likelihood functionw(i)

k+1 = w
(i)
k p(ỹk|x(i)

k ):

wherew(i)
k+1 denotes the unnormalized weights. If additive noise is considered the likelihood func-

tion has a simple form:p(ỹk+1|x(i)) = p(ỹk − h(x
(i)
k )). Then weight update for each particle is

based on the likelihood function and given by

w
(i)
k = w

(i)
k−1p(ỹk|x(i)

k−1) (16a)

w
(i)
k =

w
(i)
k

∑N
i=1w

(i)
k

(16b)

where the likelihood functionp(ỹk|x(i)
k ) depends on the noise process of the observation directly.

Resampling and Regularization

The variance associated with the weights in sequential importance sampling can only increase
over time and eventually all but one particle will have negligible weight.20 To overcome this de-
generacy problem resampling is used to discard obsolete particles with small weights and multiply
particles with large weights.21 The resampling procedure starts by drawing samplesN times from
{x(i)

k+1, w
(i)
k+1} to obtainN equally weighted particles,{x(i)

k+1, 1/N}.

Since resampling duplicates the particles with large weights, generating many identical particles
may greatly decrease the number of distinct particles, resampling is usually followed by a regular-
ization step. The regularization step adds small noise to the resampled particles to increase particle
diversity.21 A small independent jitter drawn from a Gaussian distribution is added to the identical
particles to increase diversity.

ATTITUDE PARTICLE FILTER

The attitude state errors are represented as error GRPs resulting in a minimum parameter repre-
sentation for the attitude state error.18 To within first order, the state error covariance of the attitude
is invariant whether the errors are parameterized using quaternions or GRPs.22 Therefore the atti-
tude state error-covariance can be directly decomposed into error GRP particles for use in the PF.
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The particles corresponding to the error GRPs are first converted into error quaternions so that the
quaternion particles can be computed. The error quaternion, denoted byδq−

k (i), associated with
theith error GRP particle is computed by23

δ̺−
k (i) = f−1

[

a+ δq−4k(i)
]

χ
δp
k (i) (17a)

δq−4k(i) =
−a||χδp

k (i)||2 + f
√

f2 + (1− a2)||χδp
k (i)||2

f2 + ||χδp
k (i)||2

(17b)

δq−
k (i) =

[

δ̺−
k (i)

δq−4k(i)

]

(17c)

wherea is a parameter from 0 to 1 andf is a scale factor, which is often set tof = 2(a+1) so that
the attitude error covariance is that of the small roll, pitch and yaw angle errors. Here it is noted
that the subscriptI and superscriptB in qB

I and its estimates are omitted in this and the following
sections for clarity. Theith quaternion particle is given by a rotation ofδq−

k (i) about thea priori
estimate:

q̂−
k (i) = δq−

k (i)⊗ q̂−
k (0) (18)

where
q′ ⊗ q ≡

[

Ψ(q′) q′
]

q (19)

After propagation, the particles for the error GRP states are computed with the propagated attitude
particles. The estimated mean quaternion,q̂−

k+1(0), is stored, and error quaternions corresponding
to each propagated quaternion particles are computed as:

δq̂−
k+1(i) = q̂−

k+1(i) ⊗
[

q̂−
k+1(0)

]−1
(20)

where the notation for the conjugate quaternion is defined as:

q−1 ≡
[

−̺

q4

]

(21)

Using the result of Eq. (20), the error GRP sigma points are computed as

δp−
k+1(i) = f

δ ˆ̺−k+1(i)

a+ δq̂−4k+1
(i)

(22)

The particle filter approach used in this work is based on the generalized Rodrigues parameters
local error representation. The global state used is the quaternion to avoid singularity in the attitude
states. Uniform quaternions are generated to approximate auniform distribution of rotation states.

SIMULATION RESULTS

Using light curves for satellite orientation and surface parameter estimation have many inherent
challenges. This section studies this problem by considering two examples; the first example is
a simplified state model to highlight some of these challenges and the second example is a full
3 degree of freedom rotation model. The simple model uses a two-dimensional state with one
orientation angle and one angular rate. This simplified model is used to show the challenges that
object symmetry poses to light curve process. Using this simplified model a Particle Filter (PF)
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Figure 1. Test Case Definition

technique is used to study the light curve processing problem. The benefit of studying this simplified
system is that one can remove the nonlinearities from the dynamic equations and therefore isolating
the nonlinearity and ambiguity in the measurement equations, i.e. the light curve model. The second
example considers a full orientation state model thats estimates the 3 degree of freedom orientation
state of the Space Object using a PF with the local GRP representation discussed earlier.

Example 1: Test Case Definition

To study the light curve process problem in detail a simplified model is considered. The model
consists of triangular prisms, square prisms and regular hexagonal prisms. All shape models con-
sidered in this section are orientated such that theB3 direction is aligned with inertialz axis. The
shape model are allowed to rotate about theirB3 body axis. The parameters included in the state
vector are theθ andω, the between theB1 andx and the angular velocity respectively. Figure1
shown the geometry of the simple test case. The Sun vectoruI

sun and observer direction vectoruI
obs

are defined to lie in thex− y plane. The dynamic model for this simple test case is given by

θ̇ = ω (23a)

ω̇ = 0 (23b)

Then the system and measurement equations can be written in the following form:

ẋ = Ax (24a)

y = h (x,p) + v (24b)

where

A =

[

0 1
0 0

]

(25)

andh (x,p) is the nonlinear light curve measurement function andp is a vector of the light curve
model parameter, such as shape and surface parameters.

Figures2 and3 show the simulation results for the PF applied to example 1. Figure 2 show a
histogram of the particles evolving over time. From this figure we can see the solution is bimodal
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and consist of two distinct peaks. This is due to the fact the shape has symmetries and these two
peak represent likely orientation based on the data. Figure3 shows these two peaks at different
times. Form this figure it can be seen one of the peaks reduces in size as more measurements are
processed. The new observations reduce the likelihood thatthis second orientation is correct. This
shows the benefit of the PF the non-Gaussian and bimodal distributions that can arise for the light
curve processing problem.

(a) Attitude (Deg) (b) Attitude (Deg) Centered

Figure 2. Histogram of Attitude Particles

Example 2: Light Curve Based Attitude Estimation

This section discusses a simulation example of the use of thePF approach for space object char-
acterization. In this section the light curve models discussed earlier are used to simulate an object
in a near Geosynchronous Orbit (GEO) orbit. The model used isa rectangular prism and the same
initial attitude and positions states or used for this case as was used earlier. The orbit is assumed
know and only the attitude and angular velocity is estimated. The simulation conditions are given
by

• Geographic position of the ground site is0◦ North,172◦ West with0 km altitude

• The orbital elements are given bya = 25864.16932 km, e = 0.743, i = 30.0083 deg,
ω = Ω = 0.0 deg andM0 = 91.065 deg

• The initial time of the simulation is May8, 2007 at 5:27.55 UTC

• Initial quaternion:qB
I = [1/

√
2 0 0 1/

√
2]T

• A constant rotation rate, defined as the body rate with respect to the inertial frame (represented
in body coordinates) is used given byωB

B/I = [0 0.00262 0]T rad/s

For this simulation scenarios, measurements of apparent magnitude are produced using zero-mean
white-noise error processes with a standard deviation of0.05 for magnitude. The initial errors for
the states are50 deg for all three attitudes,1, 000 deg/hr for the rotational rate. The time interval
between the measurements is set to1 seconds and data are simulated for1 hour.

The simulation results for the PF approach applied to light curve measurement processing is
shown in Figure5. This figure include both the attitude and angular velocity estimation error for
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Figure 3. Histogram of Attitude Particles at t = 2s t = 1 min t = 4 min

the scenario used. From Figures5(a) and5(c) we can see that the PF approach preforms well in
estimating both the angular velocity and attitude states. Further investigation is required both from
the example shown in this section, but it can be concluded that the PF Filtering approach is well
suited for nonlinear problems and therefore for space object characterization.

CONCLUSION

In this paper, a PF estimation scheme using light curve measurements was presented and used to
estimate attitude and angular velocity of a space object (SO) with an assumed shape. Two simulation
cases were considered, the first case was a simplified state model to highlight the challenges an
object with symmetry poses to light curve process. The second case was used a full orientation
state model to estimation the 3 degree of freedom orientation state of the Space Object. The light
curve model used was based on the Ashikhmin-Shirley BRDF andshowed good performance for
simulated and real data examples. Simulation results indicated that the performance PF for the light
curve processing problem is promising.
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