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Abstract— A major problem faced while trajectory planning
of spacecraft formation flying is obtaining a “drift-free” case
to optimize fuel consumption. The paper considers the effect
of non-linearity on relative motion dynamics of spacecraft
formation flying with disturbance caused by solar radiation
pressure on the formation of spacecraft. The non-linearity is
a function of initial conditions, and a perturbation approach
is used to correct the initial conditions while maintaining the
formation in bounds and also satisfying the zero secular growth
requirements. A full state feedback adaptive control law is
developed which accounts for the solar radiation pressure,
and also estimates and updates the unknown spacecraft mass
for formation keeping. The relative dynamics are written as
a function of the true anomaly ensuring that the control
law works effectively for highly eccentric orbits. Lastly, a
Lyapunov stability analysis is shown to ensure the stability of
the controller.

I. INTRODUCTION

Coordination of satellites in formation flying helps dis-
tribute the mission task among many satellites. The use of
satellites in formation helps in better coverage of the Earth,
increase in resolution of science data, provides faster ground
track repeats, and also helps to increase redundancy. Dis-
tributed spacecraft performing space-based sensing, imaging,
and communication provide large aperture areas at the cost of
maintaining a meaningful formation geometry with minimal
error. Further, by allowing instruments on separate spacecraft
to be combined into a co-observatory, formation flying can
replace an expensive multiple-payload platform with a large
number of low-cost spacecraft [1].

A conceptual difference between formation flying prob-
lems that result in two or more vehicles docking and space-
craft formation flying of maintaining a relative orbit of a
cluster is that the latter is significantly more sensitive to
relative orbit modeling errors [2]. From a controls perspective
a rendezvous problem requires less precision as the feedback
laws are robust for minor errors made in the modeling.
The same is not true for the case of formation flying of
spacecraft that have to maintain a relative orbit for their

1 Graduate Student, Mechanical and Aerospace Department, University
at Buffalo, The State University of New York, Amherst, NY 14260-4400
anikethk@buffalo.edu

2 Graduate Student, Mechanical and Aerospace Department, University
at Buffalo, The State University of New York, Amherst, NY 14260-4400
kbukkamb@buffalo.edu

3 Ph.D. Candidate, Mechanical and Aerospace Department, University
at Buffalo, The State University of New York, Amherst, NY 14260-4400
mjschmid@buffalo.edu

4 CUBRC Professor in Space Situational Awareness, Mechanical and
Aerospace Department, University at Buffalo, The State University of New
York, Amherst, NY 14260-4400 johnc@buffalo.edu

lifetime. Maintaining the relative formation in presence of
unknown, time varying disruptive disturbances has proven
to be a challenging problem for control engineers.

The Clohessy-Wiltshire (CW) equations model the rel-
ative motion dynamics between the follower and leader
spacecraft, under the assumptions of a circular reference
orbit, spherical Earth and linearized differential equations
[3]. The existing literature on the study of relative motion
dynamics of satellites proves that there exists two types of
perturbations: intrinsic and exogenous disturbances. Intrinsic
disturbances arise due to the non-linearity of the differential
gravitational acceleration, eccentricity of the reference and
the Earth’s oblateness. These three are the most important
perturbations that breakdown the circular orbit solutions to
the CW equations [3], while the external disturbances can
be due to various factors such as atmospheric drag, solar
radiation pressure, J2 perturbations, etc.

Solar Radiation Pressure (SRP) is a non conservative force
acting on a spacecraft. Among all non-gravitational forces
SRP is the largest, and hence can have a significant influence
on orbital dynamics. In this paper we use the SRP force
model that has been used for most analytical studies. The
force caused by SRP acts along the object-Sun line, directly
away from the Sun. The model of SRP pressure used in this
paper is commonly referred to as the “cannonball” model,
and the mathematical model will be discussed in section II-
B. The assumption is made that the spacecraft is in High
Earth Orbit (HEO); this enables us to neglect the shadow
regions and the effect of atmospheric drag as well.

In this paper, the problem of satellite formation flying with
disturbances arising due to SRP is considered. The nonlinear
version of the CW equations are used to design a learning
controller. This controller adapts to the disturbances entering
the system model. Another important aspect addressed is
accounting for the nonlinear and eccentric perturbations to
obtain bounded relative orbits. The process of changing
the CW initial conditions to eliminate secular growth and
obtaining bounded relative orbits [3] has also been used.

II. MODEL

A. Relative Dynamics

The relative nonlinear dynamics of the follower is given
by the CW equations as [2]
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where x, y and z are the relative position of follower with
respect to leader in local-vertical-local-horizontal (LVLH)
coordinate system, µ is the gravitational parameter, θ is
time varying true anomaly of the leader spacecraft, θ̇ is
the rotational velocity of the reference frame, and rl is the
instantaneous distance of leader spacecraft from the Earth,
given by

rl =
a(1− e2)

1+ ecosθ(t)
(2)

where a is the semi-major axis of the leader and e is the
eccentricity of the leader.

The relative dynamics are written as a function of the true
anomaly ensuring that the control law works effectively for
highly eccentric orbits. Hence θ̇(t) and θ̈(t) are given by
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n
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[
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]2
θ̈(t) =−2n2 sinθ(t)
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where n =
√

µ/a3 is the mean motion of the leader. Pre-
multiplying (1) with the mass of the follower, m f , the
nonlinear dynamics of follower can be regrouped in the form
given by

m f q̈ f +C(θ̇)q̇ f +D(θ̈ , θ̇ ,r f )q f +Nl = 0 (3)

where q f = [x y z]T and r f = [(rl + x)2 + y2 + z2]
1
2 .

The matrix C is a skew-symmetric Coriolis-like matrix given
by
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Also, Nl is a nonlinear term defined as
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Using method of virtual work for the insertion of differ-

ential force due to solar radiation pressure, control inputs for
the leader and the follower spacecraft, the nonlinear relative
position dynamics of the follower is

m f q̈ f +C(θ̇)q̇ f +D(θ̈ , θ̇ ,r f )q f +Nl + fu(ul)+FSRP = u f
(4)

where

fu(ul) =
m f

ml

[
ulx uly ulz

]T
, u f =

[
u f x u f y u f z

]T
and FSRP is the difference between the force due to SRP on
the follower and leader, given by

FSRP = m f ∆aSRP (5)

B. SRP Model

The model used for simulation of the SRP disturbance
force is given by the cannonball model as [4]

fSRP =−P�CSRPS ûSAT (6)

where P� is the pressure of solar radiation, CSRP is the coef-
ficient of reflectivity, S is the surface area of the spacecraft
perpendicular to the Sun, and ûSAT is the unit position vector
from the satellite to the center of the Sun. The disturbance
acceleration [5] acting on a spacecraft can be characterized
as

aSRP =−σ
S
m

ûSUN

where m is the mass of the spacecraft and σ is a constant that
includes the effect of the distance to the Sun and reflectivity
of the spacecraft. In our case we take σ = 7×10−6. For the
purpose of simplification the distance between the spacecraft
and Earth is neglected, hence ûSUN is a unit vector pointing
to the Earth from the Sun. As mentioned in section I the
shadow region has been neglected for HEO applications.

The variable ∆aSRP is used for the difference in SRP forces
between the leader and follower spacecraft in LVLH frame:

∆aSRP =−σ∆
S
m

ûSUN|LV LH (7)

where ûSUN|LV LH is the unit vector from the Sun pointing
to the Earth in the LVLH frame.

Remark 1: The left hand side of (4) produces an affine
parameterization [6]:

m f ξξξ +Cq̇ f +Dq f +Nl +fu(ul)=Y (ξξξ , q̇ f ,q f , θ̈ ,θ ,rl ,r f ,ul)φ
(8)

where ξξξ = [ξx,ξy,ξz]
T is a dummy variable. The matrix Y is

a regression matrix given by

Y =
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and φφφ is an unknown constant system parameter consisting
of the mass of the spacecraft:

φφφ =
[
m f

m f
ml

]T
Remark 2: Parameterization of perturbation force is con-

sidered by combining the force and acceleration equations,
given by (5) and (7), of the SRP respectively, as

FSRP = Akfd(t) (9)



where Ak = m f ∆
S
m is the unknown constant disturbance

parameter. The term ∆
S
m has a very small value and hence can

be neglected over an orbit; this therefore lets us make the pre-
viuosly mentioned assumption. Also, fd(t) = −σ ûSUN|LV LH
is a function of time that depends on the unit vector pointing
to the Earth from the Sun.

III. ADAPTIVE LEARNING CONTROL LAW

In this section, a control law is formulated such that the
relative position of follower, q f , tracks a desired relative
trajectory qd f (t), i.e.

lim
t→∞

q f (t) = qd f (t)

The adaptive control law for the model in (4) is developed
such that the tracking error, e, exhibits asymptotic stability.
For the purpose of designing a controller, a combined error
[7] variable ηηη(t) ∈ℜ3 is defined:

ηηη = ė+λ0e = ∆(s)e (10)

where λ0 is an unknown constant, diagonal and positive
definite matrix, and ∆(s) = s + λ0 is a stable (Hurwitz)
polynomial with Laplace variable s. The variable ηηη can be
rewritten as

ηηη = q̇ f − q̇r

where q̇r is defined as

q̇r = q̇d f −λ0e

The control law can be designed as

u f = Yr φ̂̂φ̂φ − kηηη + Âk fd(t) (11)

where k is a constant, positive definite matrix, and Yr =
Y (q̈d f −λ0 e, q̇ f ,q f , θ̈ ,θ ,rl ,r f ,ul). Using the above control
law, the closed loop tracking error is given by

η̇ηη φφφ + kηηη = Yr φ̃φφ + Ãk fd(t) (12)

where

φ̃φφ = φ̂φφ −φφφ (13)

Ãk = Âk−Ak (14)

Using the Laplace transformation, this can be rewritten as

ηηη =
1/φφφ

s+(k/φ)φ)φ)
[Yr φ̃φφ + Ãk fd(t)] (15)

The above equation is of the form of Lemma 8.1 in
pg. 324 of [7], where 1/φφφ

s+(k/φ)φ)φ)
is a SPR transfer function.

Using the aforementioned Lemma 8.1, the adaptation law
can be designed as

˙̂
φφφ =−γ Y ′r ηηη (16)
˙̂Ak =−al fd(t)′ηηη (17)

where γ is a constant, diagonal and positive definite matrix,
and al is a positive constant.

In addition, the time derivatives of (13) and (14) are given
by

˙̃
φφφ , ˙̂

φφφ − φ̇φφ

˙̃Ak ,
˙̂Ak− Ȧk

(18)

Since the parameters φφφ and Ak are unknown constants, from
(18) the parameter estimation error is given by:

˙̃
φφφ , ˙̂

φφφ

˙̃Ak ,
˙̂Ak

(19)

A. Stability Analysis

In this section a stability analysis on the controller is
performed. The following non-negative candidate Lyapunov
function is considered

V (t) = m f ηηη
T

ηηη + γ
−1

φ̃φφ
T

φ̃φφ +a−1
l Ã2
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Taking the time derivative of the above mentioned function
along the closed-loop dynamics of (12) results in

V̇ (t) = 2m f ηηη
T

η̇ηη +2γ
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It is straightforward to verify that

V̇ =−2|k|ηηηT
ηηη (22)

As seen from (20) and (21), V is a positive definite
function and V̇ is a negative semi-definite function. Hence,
V is a non-increasing function, that implies V (t) ∈ L∞. All
signals in closed loop system can be shown to remain
bounded by utilizing the standard signal chasing arguments,
employing the boundedness of all signals in closed-loop
system and (12), we can conclude that η̇ηη(t) ∈ L∞. Solving
the differential (22), we get

V (0)−V (∞) = 2|k|
∞∫

0

‖ηηη(t)‖2dt (23)

Considering (23) and boundedness of V (t), we can conclude
that η̇ηη(t) ∈ L2, t ≥ 0.

Using Barbalat’s Lemma, we can conclude that ηηη(t)
converges asymptotically, given by

lim
t→∞

ηηη(t) = 0 (24)

Using the definition of ηηη(t) as in (10), the property ηηη(t)∈
L∞∩L2 and (24); Lemma 1.6 of [8] enables us to conclude
that the adaptive learning control law ensures asymptotic
convergence of the position and velocity tracking errors,
given by

lim
t→∞

e(t), ė(t) = 0 (25)



IV. REDUCTION OF SECULAR GROWTH

The intrinsic effects of nonlinearity and eccentricity in the
dynamics of the relative motion breaks down the solution for
the CW equations. In [4] a solution has been developed to
help eliminate the secular growth in the CW equations. This
is done by modifying the initial conditions for the follower
spacecraft. A Taylor series expansion of the relative circular
orbit gives

ẍ−2nẏ−n2x =
3µ

a4 [
y2 + z2−2x2

2
]

ÿ+2nẋ =
−3µ

a4 xy

z̈+n2z =
−3µ

a4 xz

(26)

This is the perturbed CW equation due to nonlinearity with
ε = 3µ

a4 as the perturbation parameter. The solution to (26) is
given by [4]

x = xh + εxcn, ẋ = ẋh + ẋcn, ẍ = ẍh + ẍcn

y = yh + εycn, ẏ = ẏh + ẏcn, ÿ = ÿh + ÿcn

z = zh + εzcn, ż = żh + żcn, z̈ = z̈h + z̈cn

(27)

The subscript h refers to the solution to the CW equations
and the subscript cn refers to the solution to the nonlinearity
correction. The desired initial conditions are given by

Xh(0) = [ρ

2 sin(α0) ρ cos(α0) ρ sin(α0)
ρ

2 ncos(α0)..

−ρ n sin(α0) ρ n cos(α0)]
T

Xcn(0) =
[
0 0 0 0 −ρ

48n (12+6cos2α0) 0]
]T

(28)

Similarly, the initial conditions for minimizing the effect of
eccentricity is given by [4]. The required initial condition is

ẏ0 =−ρ sinα0 +δ (e) (29)

where the solution for δ (e) is given by [4]

δ (e) = nρ sinα0[1−
2+ e

2(1+ e)1/2(1− e)3/2 ] (30)

The initial conditions for balancing the combined effects
of nonlinearity and eccentricity are made to the ẏ(0) term.
Hence the initial condition for reduced secular growth is
given by

ẏ(0) =−ρ sinα0 +δ (e)+ ε ẏcn(0) (31)

These initial conditions will be used to reduce the secular
growth and minimize fuel consumption.

V. RESULTS

From the following simulations the effectiveness of the
controller can be seen. Fig. 1b shows how that the effect
of SRP causes the spacecraft to deviate from the reference
orbit (Fig. 1a). In high eccentric orbits the effect can be seen
more evidently as the SRP is dominant. This is undesirable
to any engineer or person associated with the mission, as it

(a) Follower Trajectory Relative to the Leader

(b) Follower Trajectory Relative to the Leader with
Effects of SRP without a Controller

Fig. 1: Relative Motion Trajectory

is clearly visible that any mission cannot be accomplished
without a controller that will continuously work to keep the
spacecraft in the desired orbit. It can be seen from Fig. 2
that the controller designed here is working to adapt itself to
the disturbances and helps maintain the satellite in desired
orbit.

Fig. 2: Follower Trajectory Relative to the Leader with
Controller and Disturbance

For the purpose of illustration and a numerical example,



TABLE I: Orbital Parameters

a e i Ω ω θ(0) T ρ

42095 0.818181 10◦ 0◦ 0◦ 180◦ 23.8756 1000
km hr km

TABLE II: Additional Parameters

ml m f ul
1250 Kg 1250 Kg [0,0,0]T

data from the Magnetospheric Multiscale Mission (MMS)
[9] is used. Actual orbital elements obtained from the
mission specifications of MMS are used for propagation.
The adaptive control described in (11) is simulated for the
relative dynamics of the follower with respect to the leader
spacecraft. The mission parameters used for the purpose of
simulation are given in the Table I.

The relative trajectory of follower and leader spacecraft are
numerically solved by using the thrust free dynamics given
by (1). The initial conditions for the initial position are given
by (31). The additional parameters used for the purpose of
simulation are given in Table II.

The gains for the control law, i.e. learning, control and
adaption gains mentioned previously are obtained through
trial and error, which are shown in Table III. The actual
trajectory for q f is given by Fig. 1a. The trajectory with
disturbance and without a controller can be seen in Fig.
1b. Fig. 2 shows the trajectory after using the controller to
compensate for the disturbance. The errors and convergence
of the estimates are shown in Fig. 3 and Fig. 4. It is seen that
the errors are of the order 10−4, 10−7 and 10−7 km along
x, y and z axis, respectively; this error is considered to be
minimal in our controller. It is also seen that the estimates
converge very well to their respected actual values.

TABLE III: Control Parameters

λ0 k γ al
I3×3 3×103I3×3 102I2×2 1000

Fig. 3: Error Along the X , Y and Z Axes

Fig. 4: Convergence of Estimated Value and Actual Value of
FSRP

(a) Nonlinear Dynamics Simulation with Uncorrected Initial Condi-
tions

(b) Nonlinear Dynamics Simulation with Corrected Initial Conditions

Fig. 5: Effect of Initial Conditions

The reduction of secular growth by correcting the initial



conditions can be seen in Fig. 5b and the uncorrected CW
conditions are shown in Fig. 5a. Lastly the effect of secular
growth on the complete orbits can be seen in Figs. 6a and 6b.
Here it is clearly visible that changing the initial conditions
has a great effect on the orbits over a prolonged time.

(a) Relative Orbit with Uncorrected Initial Conditions

(b) Relative Orbit with Corrected Initial Conditions

Fig. 6: Effect of Initial Conditions on Full Orbit

VI. CONCLUSION
In this paper an adaptive control algorithm has been

designed for controlling relative position dynamics of a
leader and follower spacecraft. The Lyapunov type design
adaptive controller law was able to estimate the parameters
and the disturbances caused by solar radiation pressure. This
facilitates tracking of the reference trajectories with global
asymptotic convergence. The use of the Magnetospheric
Multiscale Mission spacecraft mission specifications for nu-
merical simulations validates the claim that this controller
also works for highly eccentric orbits. Correction of initial
conditions reduces the secular growth as shown in the ob-
tained results. This also helps to minimize fuel consumption
over time.
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