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In recent years there has been an increase in the number of inactive and debris
Space Objects (SOs). This work examines both data driven and model driven SO
classification. The model driven approach investigated for this work is based on
the Multiple Model Adaptive Estimation approach to extract SO characteristics
from observations while estimating the probability the observations belonging to
a given class of objects. The data driven methods are based on Principle Compo-
nent Analysis and Convolutional Neural Network Classification approaches. The
performance of these strategies for SO classification is demonstrated via simulated
scenarios.

INTRODUCTION

SSA involves the collection, processing, fusion and assessment of data and information from

many different sources and the dissemination of information to decision makers and various users.

Due to the large number of space objects (SOs) and the limited number of sensors available to track

them, it is difficult to maintain persistent surveillance, and, therefore, there is inherent uncertainty

and latency in the knowledge of the SO population. Although the amount of light collected from

these objects is small, information can still be extracted from photometric data which can be used

to determine shapes and other properties. Light curve data are the time-varying sensor wavelength-

dependent apparent magnitude of energy (e.g. photons) scattered (reflected) off of an object along

the line-of-sight to an observer. Attitude estimation and extraction of other characteristic using light

curve data has been demonstrated in Refs. 1–5.

This work studies the problem of classifying light curve measurements based on the Space Object

(SO) class that it likely originates from using both model driven and data driven methods. The model

driven approach uses the probability from a Multiple Model Adaptive Estimation (MMAE) process

to determine the probability that a given SO falls in a given class. The MMAE approach has been

applied to the shape estimation problem4 with success. This work uses the MMAE approach to

also provide SO classification. Along with this approach data driven classification approaches are

also considered. MMAE is a recursive algorithm that uses a bank of estimators, each dependent on

a particular hypothesis, to determine an estimate based upon an unknown physical process under
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consideration. In particular, the hypotheses can correspond to different mathematical models of

the same physical process or of the same model but dependent upon different constants or model

parameters. The classification approach used in the work in is based on tree-like structure. The first

determination is made from the size of the shape models in the bank. For each model in the bank an

aspect ratio is calculated for each size by calculating the length ratio of that side with respect to the

largest side and if a given model has an aspect ratio less than 0.1 it is considered to be a fragment.

The second classification determination is made from the control states. For each model in the

bank that is not a fragment or a rocket body additional models are created that are copies of that

shape model but have different control profiles. The control profiles include uncontrolled, Sun

pointing, spin stabilized, and nadir pointing. Therefore, for models that are not fragments of rocket

bodies three additional modes are created with control. The control states are not limited to ones

used in this work, and large lists of control states may be possible, but for this study these three are

sufficient.

The classification is determined using the shape model, for example determining whether an

object is intact or passive and whether it is a rocket body or a payload. The final classification further

separates the SO into the type of control state and determining whether an object is uncontrolled or

Sun pointing, etc. This method uses the MMAE probability to classify the four feature classes and

results for this method are shown.

The MMAE classification approach uses models of the dynamics and physics to estimate model

relevant parameters. In general, there are many unknown parameters that should be included in

the estimation process but the dimensionality in this complex problem does not lend itself to com-

putationally efficient solutions. Therefore, for this work data driven classification approaches are

investigated that are not based on models but rather use the observations or data to detect relation-

ships and use these relationships for classification. The two data driven classification approaches

used for this work are the Principle Component Analysis6 (PCA) approach and the Convolutional

Neural Network Classification7 (CNN) approach.

The PCA approach is remarkably simple and can be apply efficiently to large data sets to detect

linear relationships in the data. This approach is very popular and is usually one of the first ap-

proaches scientists use for classification problems. The PCA approach provides a method to reduce

the dimensionality of data set. This reduced representation is used as features in the classification

problem. The PCA approach does have the shortcomings that it only learns linear relationships be-

tween the data, and that this approach does not naturally work well with data sets that have variable

dimensionality (at least without special preprocessing). For example, each light curve observation

sequence may have different sampling frequency, total observation time, and or measurement noise

and the PCA approach may not handle this variability well.

The second data drive approach considered uses the CNN approach, which has the benefit of

allowing for nonlinear relationships to be learned from the data. The CNN approach works by using

the concept of Neural Networks (NNs) to learn convolution features for the data. NN are function

approximations that are inspired by biological neural networks (in particular the human brain), and

are used to estimate input output relationships. NN can be used for classification by estimating a

relationship between data and class parameters. In other words, the NN classifier will map from

a data vector with dimension m × 1, (where m is the number of measurements) to a classification

vector with dimension nc × 1 (where nc is the number of classes) that indicated which class a

measurement vector belongs to. The NN is then given training data to learn this mapping, and once
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the mapping is learned the NN can be applied to real-world data sets.

The training data consist of measurements yi, and labels, ci for each measurement, where i
denote the ith training sample. The vectors yi are labeled by using an indicator, ci, for each class,

where 1 indicates it belongs to a given class, and all other classes have an indicator of 0. The CNN

basically convolves the data with convolutional kernels to generate features that can be used to map

to classification states. This convolution step gives CNN the ability to be robust to feature location

and input data size. If the features are moved within the data vector the CNN can still classify

correctly and moreover determine the location of the feature.

The organization of this paper is as follows. First, the Ashikmin-Shirley light curve model is

shown, and the shape models used in this work are discussed. Next, the Unscented Kalman Filter

approach used in this work is outlined. Following this, the MMAE approach used in this work is

outlined. Then the MMAE classification approach is discussed. Following this both data driven

approaches are discussed. Finally, results are shown for simulated examples, discussions, and con-

clusions are provided. This paper discusses the theory involved behind the proposed algorithms and

results from a variety of simulation trials are shown.

LIGHT CURVE MODELING

There are a number of models used for simulating light curve measurements in the literature.

Reference8 provides a good summary of the most popular ones adopted for SO applications. These

models differ in the physics that they represents and their level of complexity, but for SO appli-

cations the ability to model specular reflection and complex shapes while conserving energy is

desirable. The Ashikhmin-Shirley9 model has all the desirable properties while producing realistic

SO light curves. This model is based on the bidirectional reflectance distribution function (BRDF)

which models light distribution scattered from the surface due to the incident light. The BRDF at

any point on the surface is a function of two directions, the direction from which the light source

originates and the direction from which the scattered light leaves the observed surface. The model

in Ref. 9 decomposes the BRDF into a specular component and a diffuse component. The two terms

sum to give the total BRDF:

fr = (dRd + sRs) (1)

which depends on the diffuse bidirectional reflectance (Rd), the specular bidirectional reflectance

(Rs), and the fraction of each to the total (d and s respectively where d + s = 1), where i denotes

the ith facet of the Space Objects (SOs). Each facet contributes independently to the brightness

and total brightness is the sum over each facet’s contribution. The diffuse component represents

light that is scattered equally in all directions (Lambertian) and the specular component represents

light that is concentrated about some direction (mirror-like). Reference 9 develops a model for

continuous arbitrary surfaces but simplifies for flat surfaces. This simplified model is employed in

this work because shape models are considered to consist of a finite number of flat facets. Therefore

the total observed brightness of an object becomes the sum of the contribution from each facet. In

each model, however, c = uI
obs

T
uI
h (seen in Figure 1(b)), ρ is the diffuse reflectance (0 ≤ ρ ≤ 1),

and F0 is the specular reflectance of the surface at normal incidence (0 ≤ F0 ≤ 1). To be used as a

prediction tool for brightness and radiation pressure calculations, an important aspect of the BRDF

is energy conservation. For energy to be conserved, the integral of the BRDF times cos (θr) over all
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Figure 1. Reflection Geometry and Space Object Shape Model

solid angles in the hemisphere with θr ≤ 90 needs to be less than unity, with

∫ 2π

0

∫ π/2

0
fr cos (θr) sin (θr) dθrdφ = Rd +Rs (2)

For the BRDF given in Eq. (1), this corresponds to constant values of Rd = dρ and Rs = sF0. The

remaining energy not reflected by the surface is either transmitted or absorbed. In this paper it is

assumed the transmitted energy is zero. The diffuse bidirectional reflectance is then calculated as

follows:

Rd =
28ρ

23π
(1− sF0)



1−

(

1−
uI
n
T
(i)uI

sun

2

)5






1−

(

1−
uI
n
T
(i)uI

obs

2

)5


 (3)

where

F = F0 +

(

1

s
− F0

)

(1− c)5 (4)

In addition to d, ρ, and F0, the Ashikhmin-Shirley BRDF has two exponential factors (nu, nv)

that define the reflectance properties of each surface. The Ashikhmin-Shirley diffuse and specular

reflectivities are not constant, however, but rather complicated functions of illumination angle, ex-

ponential factor, and the diffuse and specular reflectances. In all cases, however, Rd + Rs ≤ 1,

so energy is conserved. The parameters of the Phong model that dictate the directional (locally

horizontal or vertical) distribution of the specular terms are nu and nv. The specular bidirectional

reflectance for the Ashikhmin-Shirley model is given by

Rs =

√

(nu + 1) (nv + 1)

8π

F

cmax
[

uI
n
T (i)uI

sun,u
I
n(i)u

I
obs

] (cos (α))nu cos2(β)+nv sin2(β)
(5)

Flux Calculation

The apparent magnitude of an SO is the result of sunlight reflecting off of its surfaces along the

line-of-sight to an observer. First, the fraction of visible sunlight that strikes an object (and is not

absorbed) is computed by

Fsun(i) = Csun,vis

(

uI
n(i) · u

I
sun

)

(6)

where Csun,vis = 1062 W/m2 is the power per square meter impinging on a given object due to

visible light striking the surface. If either the angle between the surface normal and the observer’s
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direction or the angle between the surface normal and Sun direction is greater than π/2 then there

is no light reflected toward the observer. If this is the case then the fraction of visible light is set to

Fsun(i) = 0. Next, the fraction of sunlight that strikes an object that is reflected must be computed:

Fobs(i) =
Fsun(i)ρtotal(i)A(i)

(

uI
n(i) · u

I
obs

)

‖dI‖2
(7)

The reflected light of each facet is now used to compute the total photon flux, which is measured by

an observer:

F̃ =

[

N
∑

i=1

Fobs(i)

]

+ vCDD (8)

where vCDD is the measurement noise associated with flux measured by a Charge Coupled Device

(CCD) sensor. The total photon flux is then used to compute the apparent brightness magnitude

mapp = −26.7− 2.5log10

∣

∣

∣

∣

∣

F̃

Csun,vis

∣

∣

∣

∣

∣

(9)

where −26.7 is the apparent magnitude of the Sun.

DYNAMICS OF SPACE OBJECTS

A number of parameterizations exist to specify attitude, including Euler angles, quaternions, and

Rodrigues parameters.10 This paper uses the quaternion, which is based on the Euler angle/axis

parametrization. The quaternion is defined as q ≡ [̺T q4]
T with ̺ = ê sin(ν/2), and q4 =

cos(ν/2), where ê and ν are the Euler axis of rotation and rotation angle, respectively. Clearly, the

quaternion must satisfy a unit norm constraint, qTq = 1. In terms of the quaternion, the attitude

matrix is given by

A(q) = ΞT (q)Ψ(q) (10)

where

Ξ(q) ≡

[

q4I3×3 + [̺×]

−̺T

]

(11a)

Ψ(q) ≡

[

q4I3×3 − [̺×]

−̺T

]

(11b)

with

[g×] ≡





0 −g3 g2
g3 0 −g1
−g2 g1 0



 (12)

for any general 3× 1 vector g defined such that [g×]b = g × b.

The rotational dynamics are given by the coupled first order differential equations:

q̇B
I =

1

2
Ξ(qB

I )ω
B
B/I (13a)

ω̇
B
B/I = J−1

RSO

(

T+TB
srp −

[

ω
B
B/I×

]

JRSOω
B
B/I

)

(13b)

where ω
B
B/I is the angular velocity of the RSO with respect to the inertial frame, expressed in body

coordinates, JRSO is the inertia matrix of the RSO and TB
srp and T are the torques acting on the RSO

due to SRP expressed in body coordinates and the control torque, respectively.

5



Labeled is Training Data

Labeled training data for the data driven approaches are generated using the light curve model

discussed earlier and by sampling the parameters required to define the Ashikhmin-Shirley light

curve model. The SO shape and surface parameter models are randomly generated and can be

generically grouped into four categories: fragment, regular polygon prisms, rocket bodies, and

rectangular cuboids. The regular polygon prisms are then further divided into equilateral triangular

prisms, square prisms and regular hexagonal prisms. The regular polygon prisms are prisms whose

ends (i.e. top and bottom) are regular shapes. The shape of a regular polygon prism is defined by

the number of sides n, side length s and height h:

hregular = (hmin + 0.01) + (hmax − hmin − 0.01)U [0, 1] (14a)

sregular = (smin + 0.01) + (smax − smin − 0.01)U [0, 1] (14b)

(14c)

where U [0, 1] is uniform random variable between 0 and 1. Assuming constant density throughout

the shape model, the moment of inertia matrices for each of the regular polygon models are given

by

Jtriangle = mSO







s2

24 + h2

12 0 0

0 s2

24 + h2

12 0

0 0 s2

12






(15a)

Jsquare = mSO







s2

12 + h2

12 0 0

0 s2

12 + h2

12 0

0 0 s2

6






(15b)

Jhexagon = mSO







5s2

24 + h2

12 0 0

0 5s2

24 + h2

12 0

0 0 5s2

24






(15c)

where mSO is the SO mass. The rectangular cuboids are prisms defined by two side lengths s1 and

s2 as well as the height h. The moment of inertia matrix for the cuboids are given by

Jcuboid =
mRSO

12





s22 + h2 0 0

0 s21 + h2 0

0 0 s21 + s22



 (16)

Models are generated by sampling side lengths and heights from a uniform distribution on the

interval [0.01, 5] m. For the regular polygon prisms, the number of sides are also selected randomly

on the interval [3, 6], with all instances of 5 sides being set to 4 as pentagonal prism models are not

included. In addition to the model geometry, the material properties also need be defined. For each

model, all facets are assumed to have the following: Rspec = 0.7, Rdiff = 0.3, ǫ = 0.5. The Phong

parameters nu and nv are each taken to be equal to 1000 for all facets of every model. The mass of

the SO is randomly sampled using the following mSO = mmin + (mmax −mmin)U [0, 1].

Rocket body models are generated using octant triangulation of a sphere discussed in Ref. 11

which divides the surface of a sphere into N facet normals. Then rocket body models are generated

by connecting two hemisphere ends of radius r with a cylinder of height l. This model is not exact
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for all rocket bodies but is close enough to approximate the types of light curves seen for rocket

bodies.

Jrocket =mSO

{

Vcyl

Vtot

diag

[

1

12
(3r2 + l2),

1

12
(3r2 + l2),

r2

2

]

+
Vtop

Vtot

diag

[

1

12
(3r2 + l2),

1

12
(3r2 + l2),

r2

2

]

+

(

Vtop

Vtot

(

l

2
+

3r

8

)

+
Vcyl

Vtot

(

l

2
−

3r

8

))

(

I3×3 − eeT
)

+ 2
Vtop

Vtot

r2diag

[

83

320
,
83

320
,
2

5

]}

(17)

where e = [0, 0, 1]T and the volume of the top hemisphere is given by Vtop = 2/3πr3. It is assumed

the the bottom volume is Vbot = Vtop. The volume of the cylinder is given by Vcyl = πr2l and the

total volume is Vtot = Vtop +Vbot +Vcyl. Finally, the fragment shapes use the cuboid model but with

much smaller aspect ratios than payload shapes.
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Figure 2. MMAE Process

Multiple Model Adaptive Estimation

In this section a review of MMAE is shown. More details can be found in Refs. 12 and 13. Figure

2 shows the MMAE process. Multiple-model adaptive estimation is a recursive estimator that uses

a bank of filters that depend on models with different parameters, denoted by the vector p, which is

assumed to be constant (at least throughout the interval of adaptation). Note the stationary assump-

tion for the state and/or output processes is not necessarily required though, i.e. time varying state

and output matrices can be used. A set of distributed elements is generated from some known pdf

of p, denoted by Pr (p), to give {p(ℓ); ℓ = 1, . . . , M}. The finite set of parameters can be the re-

sults of discretizing a continuous parameters space, selecting a set of values {p(1), p(2), . . . , p(k)}
dispersed throughout the region of reasonable parameter values.

The goal of the estimation process is to determine the conditional probability of the ℓth element,

p(ℓ), given all the measurements. Application of Bayes’ rule yields

Pr (p(ℓ)|Ỹk) =
Pr (Ỹk|p

(ℓ)) Pr (p(ℓ))
M
∑

j=1

Pr (Ỹk|p
(j)) Pr (p(j))

(18)
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where Ỹk denotes the sequence {ỹ0, ỹ1, . . . , ỹk}. The conditional probability Pr (p(ℓ)|Ỹk) will

be the metric used to select the most likely model and or the most likely combination of shape

models. The a posteriori probabilities can be computed through14

Pr (p(ℓ)|Ỹk) =
Pr (ỹk, p

(ℓ)|Ỹk−1)

Pr (ỹk|Ỹk−1)

=
Pr (ỹk|x̂

−(ℓ)
k ) Pr (p(ℓ)|Ỹk−1)

M
∑

j=1

[

Pr (ỹk|x̂
−(j)
k ) Pr (p(j)|Ỹk−1)

]

(19)

The conditional probability of the observations based on each hypothesis (likelihood),

p (ỹk|x̂
−(ℓ)
k ) are given as

Pr (ỹk|x̂
−(ℓ)
k ) =

1

det
(

2πS
(ℓ)
k

)1/2
exp

{

−
1

2
e
(ℓ)T
k S

(ℓ)
k

−1
e
(ℓ)
k

}

(20)

where measurement residual for the ℓth hypothesis (model) is given by

e
(ℓ)
k = ỹk − h[x̂−

k (p
(ℓ))] (21)

and corresponding residual covariance matrix from the Unscented Kalman Filters (UKFs)

S
(ℓ)
k = P

vv (ℓ)
k (22)

where P
vv (ℓ)
k is the innovation matrix for the ℓth filter.

Note that the denominator of Eq. (19) is just a normalizing factor. The recursion formula can now

be cast into a set of defined weights ̟
(ℓ)
k , so that

̟
(ℓ)
k = ̟

(ℓ)
k−1 Pr (ỹk−1|x̂

−(ℓ)
k−1 )

̟
(ℓ)
k ←

̟
(ℓ)
k

M
∑

j=1

̟
(j)
k

(23)

where ̟
(ℓ)
k ≡ Pr (p(ℓ)|Ỹk). Note that only the current time measurement ỹk is needed to update

the weights. The weights at time t0 are initialized to ̟
(ℓ)
0 = 1/M for ℓ = 1, 2, . . . , M . The

convergence properties of MMAE are shown in Ref. 14, which assumes ergodicity in the proof.

The ergodicity assumptions can be relaxed to asymptotic stationarity and other assumptions are

even possible for non-stationary situations.15

From Eq. (20) and Eq. (23) it is seen that models which have lower residuals will have probability

that will increase; this will favor models that fit the observations better. Also from Eq. (20) it is seen

that models which have small values for det(S
(ℓ)
k ) will have probability that will grow. Assuming

that all models have same measurement noise covariance matrix Rk, this will favor models that

have smaller variance. Therefore the MMAE process will tend to select the maximum likelihood

(minimum variance) model from the bank of models.
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Angular Velocity Determination

When processing light curve observations it may not be valid to assume that the SO is uncon-

trolled, and therefore the possibility of controlled attitude states must be taken into account. Deter-

mining whether an SO has active control or not may also provide a feature state that may be used

for classification. For example, a determination of whether an SO is passive or active can be made

based on whether light curve observations indicate that the SO has active attitude control.

In this work, the attitude control is simulated by assuming control profiles, for example Sun

pointing, Nadir pointing, and spin stabilized. Then for each control profile a desired angular velocity

is determined which will allow the SO to track the relevant directions. The angular velocity profiles

are used to calculate the control torque, T, required to track this profile. This section discusses the

attitude control approach used for calculating the desired angular velocity profile which is shown in

Figure 4. The attitude control is designed to minimize the following error:

e = ω − ωd (24)

Differentiating this equation with respect to time yields

ė = ω̇ − ω̇d (25)

It is desirable for the error dynamics to decay exponential over time, i.e. e ∝ exp{−kpt}, and

therefore the error rate equation is desired to have the following form:

ė = −kpe (26)
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Then using Euler’s equation and assuming disturbance torques are negligible, Eq. (25) can be written

as

ė = J−1
SO (T− [ω×] JSOω)− ω̇d (27)

where T is the torque provide by the attitude actuator. Then for an exponentially decaying tracking

error the desired torque expression becomes

T = [ω×] JSOω − kpJSO(ω − ωd) (28)

This expression is used to calculate the torque required to maintain the desired pointing profile.

In this section angular velocity determination approaches are discussed. Consider the following

unit-vector measurement model at time tk:

b̃jk = Ak rj + vjk (29)

where b̃jk is the jth pointing vector in the body frame and rj the same pointing vector in the inertial

frame. The attitude matrix mapping from inertial to the body frame is denoted by Ak. Our goal is

to determine the rate of change of this attitude matrix or the angular velocity. Taking the difference

between successive measurements of Eq. (29) gives

b̃jk+1
− b̃jk = [Ak+1 −Ak] rj + vjk+1

− vjk (30)

It is assumed that the body angular velocity ω is constant between tk and tk+1. So terms higher than

first order in ω∆t are ignored. With these assumptions the following first-order approximation can

be used:10

Ak+1 ≈
[

I3×3 −∆t [ωk×]
]

Ak (31)

In this case ωk is the average velocity, but this becomes less of a problem as the sampling interval

decreases. Substituting Eq. (31) into Eq. (30) gives

b̃jk+1
− b̃jk = −∆t [ωk×]Ak rj + vjk+1

− vjk (32)

Our goal is to determine an angular velocity estimate independent of attitude and the reference

vectors. This is accomplished by solving Eq. (29) in terms of Ak ri and substituting the resultant

into Eq. (32), which yields

1

∆t
[b̃jk+1

− b̃jk ] = [b̃jk×]ωk +wjk (33)

where wjk is the new effective measurement noise vector given by

wjk ≡ [ωk×]vjk +
1

∆t
[vjk+1

− vjk ] (34)

Note that ∆t will have finite values, since discrete-time measurements are assumed. Equation (33)

can now be cast into a linear least-squares form for all measurement vectors, which leads to

ω̂k =
1

∆t

[

nk
∑

j=1

[b̃jk×]
TR−1

jk
[b̃jk×]

]−1

nk
∑

j=1

[b̃jk×]
TR−1

jk
(b̃jk+1

− b̃jk)

(35)
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where ω̂k is the estimate of ωk. For small ∆t the propagated true value of bj can be given using

Eq. (31):

bjk+1
≈ {I3×3 −∆t [ωk×]}bjk (36)

Substituting Eq. (36) into Eq. (31), left multiplying by [bjk×]
T and right multiplying by [bjk×]

gives

[bjk×]
TR−1

jk
[bjk×] = σ̄−2

j [bjk×]
T [bjk×] (37)

where σ̄2
j ≡ 2σ2

j /∆t2. Also, since bT
jk+1

bjk ≈ 1, it is easy to show that

[bjk×]
TR−1

jk
(bjk+1

− bjk) ≈ σ̄−2
j [bjk×]

Tbjk+1
. Therefore, Eq. (35) is well approximated by

ω̂k =
1

∆t

[ nk
∑

j=1

σ̄−2
j [b̃jk×]

T [b̃jk×]

]−1 nk
∑

j=1

σ̄−2
j [b̃jk×]

T b̃jk+1
(38)

where the measurements have again been substituted in place of their true values. For this work

perfect knowledge of the pointing direction in estimator is assumed and therefore the measurement

error variances are irrelevant and thus set to σ̄j = 1. Then for the simulation of the training data

Eq. (38) is used to determine the require angular velocity to track a particular attitude profile, and

the control torque determined by Eq. (28) is in Eq. (13) used in simulate the rotational motion.

The model driven approach therefore constrains each model by the assumed control profile, and the

angular velocities are assumed to evolve under this assumed control law. If the data does not follow

this control law this model will be assigned a low probability, and models that more closely match

the actual control law will receive high probability weights. The data drive approach automatically

learns how the light curve features change under different types of control.

PCA CLASSIFICATION

In this section the PCA and CNNC approaches are discussed. PCA is extensively used in feature

extraction to reduce the dimensionality of the original data by a linear transformation. PCA extracts

dominant features (principal components) from a set of multivariate data. The dominant features

retain most of the information, both in the sense of maximum variance of the features and in the

sense of minimum reconstruction error. To obtain the principal components or eigensignals, each

data set from an observation is formed into a column vector, yi, with length m depending on the

number of measurement per training sample. For N training samples the matrix Y (with size m×N )

can be defined given by

Y = [y1, y2, y3, · · · ,yN ] (39)

The mean measurement vector for the training set is then given by

ȳ =

N
∑

i=1

yi (40)

Then a mean center representation of the data is given by

ci = yi − ȳ (41)

Next the principal components can be found by forming the sample covariance matrix

C =
1

N − 1

N
∑

i=1

cic
T
i (42)
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Then a singular value decomposition of C can be used to write C = V TSU where V = [v1, · · · ,vm],
U = [u1, · · · ,um], V ∈ m ×m, U ∈ N × N , and S ∈ m × N . The singular values of C are

given by S = diagonal {s1, · · · , sl, 0, · · · , 0}, where the number of nonzero singular values is given

by rank of C . The principal components for any signal yi are given by

wk =
N
∑

i=1

vT
k (yi − ȳ) (43)

Then a PCA basis is selected by looking at the singular values si and truncating at some r where

Cr = V T
r SrUr is a reduced representation of C . To choose the appropriate number of basis vectors

r, there exist many criteria. A very popular graphical one is based on the screen plot, which exposes

the eigenvalues in decreasing order. The index of the last component before the plot flattens is then

selected. This is the approach used for this work.

Then the PCA classifier consists of a PCA basis which is used to calculate wi, and a clustering

approach is used which clusters based on the vector w = [w1, · · · , wr]. The vector wi is then the

projection of the mean centered measurement vector onto the PCA basis:

wi = V T
r (yi − ȳ) (44)

Then the classifier is trained on training data to develop both the PCA basis representation and the

clustering to map wi a to particular class. A simple nearest neighbor classifier is used to find a

defined number of clusters given the PCA vector, w.

Input Conv. Pool. Conv. Pool. MLP

∗k1,1

Layer 1 Layer 2

∗km,1

∗k1,1

∗k1,n

∗km,n

∗km,1

Figure 5. Convolutional Neural Network

CONVOLUTIONAL NEURAL NETWORK CLASSIFICATION

Convolutional Neural Networks (CNNs) learn both features and classification in a layered hier-

archical architecture. This architecture consists of multiple layers of either convolutional filters,

pooling, max pooling, and or subsampling layers. The convolutional layers are comprised of a

set of convolutional kernels that learn to extract local features from data. In the CNN approach

convolutional kernels are initialized randomly, and learning from data is done through an iterative

process. Some CNN implementations use pretrained filters which can provide an improvement in

performance. But in general it is desirable to learn these filters directly from the data. Each convo-

lutional layer uses the feature outputs xi with i ∈ {1, · · · , n} from the previous layer as inputs. A

convolutional kernel kj with j ∈ {1, · · · ,m} in this layer consists of a filter kernel kj,i for every

input xi. These trainable kernels are convolved over a region of the input, so the kernel is always

12



completely within the input vector. With the convolutional operator ∗, the output yj for the filter

kernel kj,i and the input x is given by

yj(x) = bj +
∑

i

ki,j ∗ xi (45)

The convolution of xi with ki,j defines the output map yj(x). The number of output maps is deter-

mined by the number of convolution filters ki,j , where 1 < j 6 m and m is the number of filter

kernels. For the light curve problem the convolutions are one dimensional since the data is in a time

series format. Then for input vector having size (sx, 1) the output vector is given by (sy, 1) for one

dimensional data. The output vector size can then be calculated from the size of the kernel, sk, and

is given by

sy = sx − sk + 1 (46)

Then a CNN applies a series of these kernels ki,j in a layered fashion where each layer has a different

size kernel that learns features on a given scale. To further reduce the number of output features in

between convolution layers max-pooling or subsampling is used. In this work we use subsampling

is used between each convolution layer. Finally, at the final layer a nonlinear function is applied

to the output in a traditional neural network (shown in Figure 5). Then the CNN classification

approach is trained by stochastic gradient descent by minimizing the error from the three outputs

compared to the labelled data. LeCun7 showed that stochastic online learning is superior against the

batch mode as it is faster and results in a better solutions. The weights for the output layer and the

convolutional layer are updated using the following relationship:

w(t+ 1) = w(t) + η
∂E

∂w
(47)

where t denotes the iteration step, and the convolutional kernel values and output neural network

parameters are cased into the vector w. The parameter E is the network classification error and η is

the learning rate. The ∂E
∂w is the gradient of the error with respect to the overall network parameters.

This method of updating the parameters is referred to stochastic gradient descent, and the gradient

is calculating with error back propagation.

SIMULATION RESULTS

In the section the MMAE, PCA, and CNN classification approaches are tested using simulated

data. The MMAE approach is evaluated against four different scenarios using the dynamics and

measurement models discussed earlier. Both PCA and CNN approaches require training. These

approaches are trained over 500 randomly generated scenarios. After training of the two approaches

they are tested against data not used in the training set.

For all scenarios, an SO is in near geosynchronous orbit with orbital elements given by a =
42, 364.17 km, e = 2.429×10−4 , i = 30 deg, ω = Ω = 0.0 deg and M0 = 91.065 deg. The simula-

tion epoch is 15-March-2010 at 04:00:00 GST. The initial quaternion and angular rate of the SO are

given by qB
I ≡ [0.7041 0.0199 0.0896 0.7041]T and ω

B
B/I = [206.26 103.13 540.41]T deg/hr.

Brightness magnitude and angle observations are simulated using a ground station located at

20.71◦ North, 156.26◦ West longitude and 3,058.6 m altitude. Measurements constructed using

instantaneous geometry are corrupted by zero-mean Gaussian white noise with standard deviations

of 1 arc-seconds on the azimuth observation, 1 arc-seconds on the elevation observation and 0.1 for
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Figure 6. PCA Clustering Approach

the brightness magnitude.16 Observations are available every 5 seconds for one hour. The initial

states for each filter are given by q̂B
I (t0) = [0.7500 0.0712 0.0947 0.6508]T (a 10 degree attitude

error), ω̂B
B/I(t0) = [220.26 117.13 554.41]T , â(t0) = 42, 364.148255 km, ê(t0) = 2.4290×10−4,

î(t0) = 30.0083 deg, ω̂(t0) = −1.172 deg, Ω̂(t0) = 0.0 deg and M̂0(t0) = 92.137 deg. Initial

3σ values are taken to be 20 deg for the attitude states, 72 (deg/hr) on the angular rates, 300 km on

position and 3 (km/s) on velocity. The process noise for the estimation filters are taken as Q
(ℓ)
k = 0

for this proof of concept simulation.

PCA CLASSIFICATION RESULTS

The PCA approach is the simplest of the approaches considered in this paper. The training data

is used to form a matrix of size m × N , where m is the number of observation per each training

sample and N denotes the total number of training samples. Then a singular value decomposition

is taken of this matrix. Only basis vectors with greater than a user defined cut-off are retained. The

results for the PCA classification approach are shown in Figure 6. For this work, the first 20 singular

values are considered. From Figure 6(c) it can be that the singular values flatten at around the 20th

component. Then only using the basis vectors for the first 20 singular values, the measurement

vector is projected onto the PCA these basis vectors using Eq. (44) to produce the classification

features. Once each measurement is used to calculate w, a nearest neighbor classifier is used to
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Figure 7. CNN Classifications Results

find the given number of clusters using the feature vector w. Then this clustering approach can be

used on data not considered in the training set. In this work 9 clusters are looked for in the data,

and these clusters are compared to the class of each model. Figures 6(a) and 6(b) show the cluster

measurements and the clusters determined from the data label on the actual classes. From Figure

6(a) it can be seen that the clustering approach clearly finds meaningful clusters of different types of

light curves. Figure 6(b) shows how the clusters relate to the classes, where the figure axes are the

values of each class. Each training sample is shown in Figure 6(b) labeled by a color corresponding

to the different classes. From this figure it can be seen that the main classes are identified, although

there were some errors. Given the simplicity of the PCA classification approach it did remarkably

well at classifying the training set.

CNN CLASSIFICATION RESULTS

The CNN classification approach is more complex than the PCA approach but it is expected that

this approach can preform better while being able to handle data sets of varying size and structure.

The CNN used in the work uses a four layer structure, where the order is convolution, subsam-

pling, convolution, the subsampling. The first and third layer used a 160 and 6 unit size kernel,

respectively. Both subsampling layers subsample the output by a factor of 2. Then the training

data consists of simulated light curve measurements as inputs and class states as outputs. For this

example only shape classes are considered, but other classes can be added in the same CNN or with

independent CNNs for each class. The training set used here is the same as the PCA simulation
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Figure 8. Spin stabilized Bus Example
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Figure 9. Uncontrolled Bus Example
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Figure 10. Nadir Pointing Bus Example

example shown in the last section. Figure 7 shows the CNN classification kernel features estimated

during the training stage. From Figure 7(a) it can be seen that the CNN approach learns light curve

features that are relevant to the classification of shape. The CNN approach reaches an overall accu-

racy of 85.4% correct classification. Figure 7(c) shows the mean squared error for classification of

shape with the CNN as a function of training data point. From this figure it can be seen that for the

size of kernels using the error has converged to a steady state.

MMAE Classification Results

Four simulation scenarios are presented to show the performance of the MMAE based classi-

fication approach to classify an SO from magnitude and angles observations. In each scenario a

different object is selected that falls into a different class. The objects selected are spin stabilized

bus, uncontrolled bus, nadir pointing bus, and uncontrolled rocket body.

Figure 8 shows the classification results for a spin stabilized bus. The simulation results use the

same initial conditions as the MMAE examples, and the true model is in the bank. In this case the

bus models are considered to be regular cuboids with aspect ratio larger than 0.1. As discussed in the

classification section there are a number of classes the classification approach determines, whether

the SO belongs to these classes or not. The first class is whether the SO is intact or a fragment.

In this case the true model is an intact bus. From Figure 8 it can be seen that this determination is

made relatively quickly. The second determination is whether the SO is Active or Passive, which is

also shown in Figure 8. The Active or Passive decision is made using the probability of all Active

and Passive models in the bank. From Figure 8 shows that the Active model has large probabilities

after 0.2 hours.

Additional examples are shown for uncontrolled bus (Figure 9), nadir pointing bus (Figure 10),

and uncontrolled rocket body (Figure 11). The approach shows good performance for these exam-

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Intact
Fragment

P
ro

b
ab

il
it

y

Time (Hr)

(a) Class 1: SO Size Features

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Active
Passive

P
ro

b
ab

il
it

y

Time (Hr)

(b) Class 2: Attitude Control

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Payload
Rocket Body
Debris

P
ro

b
ab

il
it

y

Time (Hr)

(c) Class 3: SO Type

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Uncontrolled
Nadir Pointing
Spin Stablized Pointing
Sun Pointing

P
ro

b
ab

il
it

y

Time (Hr)

(d) Class 4: Spin Control State

Figure 11. Rocket Body Example

ples at determining the correct class. From the figures it can be seen that some objects take longer

to classify. This is due to the fact that for some spin states the light curves are similar, but for un-

controlled spin states the light curves differ significantly. This can be seen from nadir pointing bus

(Figure 10), which takes the longs to converge to its classification, and from uncontrolled rocket

body (Figure 11), which converges the fastest to its classification.

CONCLUSION

In this paper a model drive classification approach based on the MMAE scheme is used for space

object classification using light curves. Alternatively, two data driven classification approaches

were also used, both the Convolutional Neural Network and PCA classification approaches are

considered. The MMAE approach used a filter to reduce brightness magnitude and angle data,

and is able to determine the probability of each model. An approach is presented that uses the

probability from MMAE process to determine the probability that a given SO falls in a given class.

The classification approach determines whether the SO is intact or fragment, its control states, the

type of control state, and whether it is rocket body, payload, or debris. Simulation results are shown

for a number of examples and good results for classification are shown.

The data drive approaches use training data to build up a classification mapping. The PCA ap-

proach learns a PCA basis which is used to map observation vectors into a feature space. Then in

the feature space simple clustering is applied to find relationships between the data. These clusters

are then used to define the classes. This work considers only the first 20 singular values for the PCA

basis and looked for 9 clusters in the data. These clusters are compared to the class of each model. It

was found that the clustering approach clearly found meaningful clusters of different types of light

curves. The PCA classification approach did remarkably well on classifying the training set.
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The second data drive approach applied was the CNN classification approach. CNN is a fea-

ture learning and classification architecture. The convolutional layer is built from a set of filters to

extract local features. This work used two convolutional layers with 160 and 6 unit size kernels,

respectively. For the CNN classification, this work only considered shape classes for class state. On

the shape classification problem the CNN approach reached a overall accuracy of 85% correct clas-

sification. There is still room for improvement in the data drive classification and high accuracy has

been seen in other applications, therefore this is goal for this application. The data driven approach

has the benefit of having simpler implementation requiring no modeling but the classification results

are still not as good as a model based approaches (i.e. the MMAE approach).
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