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The time duration of specular glint events within a light curve is related to the angular
velocity of the reflecting space object. Upper and lower bounds on the magnitude of the
observable part of angular velocity can be derived with some reasonable assumptions. The
proposed method is independent of object shape or signal periodicity, and only loosely
dependent on the choice of mathematical reflection model. This technique may be valuable
in detecting when the overall spin rate of an object has changed, or in determining that a
spacecraft that nominally has a fixed attitude is undergoing an attitude maneuver.

I. Introduction

A major research topic in recent years has been space situational awareness (SSA), which is concerned
with the identification and tracking of all space objects (SOs) in orbit around Earth. This task faces many
challenges, one of the greatest of which is inadequate data due to the limited number of available sensors.
Consequently, many research efforts focus on extracting as much information as possible from the data.
Of particular interest are techniques which determine or constrain the SO’s attitude or angular velocity.
These quantities may help in such tasks as SO identification or anomaly detection. One commonly available
observation that depends strongly on attitude and angular velocity is the history of total reflected sunlight,
or light curve.

Light curves have historically been used to investigate SOs in two ways: as part of a shape-model-based
approach, or using model-independent techniques that focus predominantly on signal characteristics. Model-
based approaches require a geometric model of the shape of the reflecting object, as in Refs. 1–4. Filters
or other estimators can calculate the expected brightness sunlight reflected from a particular shape and
compare those values to the observed light curve. Quantities such as attitude, angular rate, and surface
material properties can be estimated. In the absence of reliable or sufficiently detailed models, however,
model-based approaches may perform very poorly.

Signal-based approaches, in contrast, analyze the behavior of the observed light curve without making
assumptions about the shape of the SO. Thus they may be very useful in cases where the shape is not
well-known a priori. Model independence comes at a cost, however: a significant reduction in the types or
precision of quantities that can be estimated.

One example of a signal-based approach is the use of simultaneous observations at multiple wavelengths
to estimate surface materials.5,6 One large family of signal-based algorithms exploits frequency content to
spin rate, and in some cases, spin axis. These algorithms include, but are not limited to, Fourier analysis,7–9

wavelet analysis,5,6 and approaches based on feature periodicity (especially specular glint periodicity).10,11

While such methods perform well for tumbling or spin-stabilized objects, they cannot be applied to signals
that do not exhibit periodic behavior — such as three-axis-stabilized, geostationary objects. Furthermore,
shape symmetries may cause the observed frequencies to be greater than the physical frequencies.

This paper presents proposes an algorithm that does not rely on mulispectral data or on frequency
content. It analyzes the time duration (width) of individual specular glint events, and relates that value
to SO angular rate. Reference 12 previously studied the angular extent of specular glints (as observed via
duration or their spatial range of visiblity on Earth). However, that source emphasized the relationship of
glint size to facet angle and surface properties, and did not rigorously develop the connection to angular rate.
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The major weakness of this paper’s algorithm is that it is imprecise; rather than giving a specific estimate
of angular rate it merely provides upper and lower bounds on the observable component of that quantity.
Even such limited information may prove valuable, however. One could detect unexpected attitude motion,
identify changes in overall angular rate, or obtain a rough angular rate estimate that can be used to initialize
a filter.

The remainder of this paper is organized as follows: Section II defines the problem geometry and derives
the relationship between angular velocity and a quantity herein called “glint rate”. In Section III, the
relationship between glint rate and the light curve signal (specifically glint duration) is developed. Section IV
addresses the role played by uncertainties in real applications and suggests some implementation guidelines.
The algorithms are applied to three different data sets in Section V, and the results are discussed. Section VI
draws some conclusions.

II. Glint Geometry and Rate

A. Scenario Configuration and Definitions

The goal of this paper is to derive bounds on the angular velocity ω, which describes the rotation of the
space object’s body-fixed B frame relative to the inertial I frame. At any given time, the two frames are
related by tje attitude matrix Atrue, such that the representations of any vector v in the I and B frames are
related by vB = Atruev

I .
It is common to distinguish between synodic angular rate and sidereal angular rate. The desired ω is the

sidereal angular rate; it is independent of the observer and describes only the physical relative motion of the
two frames. The synodic angular rate is the name given to the apparent angular rate determined from the
periodicity of a light curve; it additionally depends on the observer location and the relative motion of the
Sun, SO, and observer.

This paper’s techniques are independent of the particular shape of the reflecting space object. They do,
however, require that the “glint conditions” are met: Namely, that the object includes some sufficiently large
flat surface with surface normal vector un off of which sunlight reflects in a mirrorlike fashion. The object
(or at least the currently glinting portion of it) is assumed to be a rigid body, and the surface normal vector
is assumed to be constant in the body-fixed B frame (written as uB

n ).
The inertial positions of the SO, Sun, and observer are given by the vectors RSO, Rsun and Robs,

respectively. These vectors, and their derivatives, are assumed to be known and available. For the present
application, it is most convenient to work in a coordinate system centered on the SO. In such a system, the
relative positions of the Sun and the observer are given by rsun = Rsun −RSO and robs = Robs −RSO. The
corresponding line of sight (LOS) unit vectors are uobs and usun. Glints occur when any of the SO’s facet
normal vectors un gets very close to the “specular direction”. The specular direction is aligned with the unit
half-vector uh, which bisects the angle between uobs and usun:

uh =
uobs + usun

‖uobs + usun‖
(1)

Another name for uh is the phase angle bisector, because this vector bisects the Sun-SO-observer “phase
angle”. Figure 1 illustrates the surface basis vectors and LOS vectors that enter the light curve glint
calculations.

Closeness to the glint direction (where un and uh are aligned) is described by the angle θ between these
two unit vectors. For this paper’s purposes, a full glint is defined as one for which θ reaches 0. Practically
speaking, most light curve glints are at best mostly full. Recall that the angle θ is related to the dot product
between the two vectors by

cos θ = uh · un (2)

B. Glint Rate

The duration of a glint event is determined by how quickly the angle θ approaches a value near zero and then
increases. This glint rate, θ̇, depends on the rates of change of both un and uh in the inertial frame. Note
that the glint rate θ̇ is not to be confused with the frequency at which glints occur in a periodic light curve.
The rate of change of un is related to the angular velocity of the B frame relative to the I frame, whereas
the rate of change of uh depends on the relative motion of the Sun, SO, and observer. An equation that
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Figure 1. Reflection Geometry

describes the contributions from each of these sources can be derived as follows. Unless otherwise specified,
derivatives are taken with respect to the inertial (I) frame.

Start by applying the product rule to the dot product (uh · un):

Id

dt
(uh · un) =

(
Id

dt
uh

)
· un + uh ·

(
Id

dt
un

)
(3)

Equation (3) includes two unit vector derivatives. When taking the derivative of a unit vector, which may
rotate but not stretch, it is necessary to explicitly include the normalization. Suppose an arbitrary unit
vector u is defined as:

u =
v

‖v‖
(4)

The derivative of u is then given by:
d

dt
u =

(
I− uuT

)
‖v‖

d

dt
v (5)

Applying Eq. (5) to the unit vector uh as defined in Eq. (1) gives:

Id

dt
uh =

(
I− uhuT

h

)
‖uobs + usun‖

(
Id

dt
uobs +

Id

dt
usun

)
(6)

The derivatives of uobs and usun are in turn given by

Id

dt
uobs =

(
I− uobsu

T
obs

)
‖robs‖

Id

dt
robs =

(
I− uobsu

T
obs

)
‖robs‖

(Vobs −VSO) (7a)

Id

dt
usun =

(
I− usunuT

sun

)
‖rsun‖

Id

dt
rsun =

(
I− usunuT

sun

)
‖rsun‖

(Vsun −VSO) (7b)

Returning to Eq. (3), the derivative of un in the I frame is found by applying the transport theorem.
The body-frame derivative of the facet normal vector is zero, so only the cross product term remains:

Id

dt
un =

Bd

dt
un + ω × un = ω × un (8)

Substituting Eq. (8) into Eq. (3) yields:

Id

dt
(uh · un) =

(
Id

dt
uh

)
· un + uh · (ω × un)

=

(
Id

dt
uh

)
· un + ω · (un × uh) (9)
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The second form of the equation uses an equivalent form of the scalar triple product. Also, note that
Id
dt uh

could be written in terms of known position and velocity vectors using Eqs. (6)-(7). It has been left in its
original form here for conciseness.

Next, decompose the facet normal un into a component parallel to uh and a component orthogonal to
uh:

un = cos θuh + sin θup (10)

In Eq. (10), the vector up is a unit vector that lies in the direction of the projection of un onto the plane
orthogonal to uh. For purposes of this algorithm, it is a mathematical construct that does not need to be
explicitly computed.

Substitute Eq. (10) into Eq. (9) and simplify. The simplification exploits the fact that the derivative of
a unit vector is orthogonal to the vector itself: u̇ · u = 0.

Id

dt
(uh · un) =

(
Id

dt
uh

)
· (cos θuh + sin θup) + ω · [(cos θuh + sin θup)× uh]

= sin θ

[(
Id

dt
uh

)
· up

]
+ sin θ [ω · (up × uh)] (11)

An alternative form of this derivative can be found by differentiating Eq. (2):

Id

dt
(uh · un) =

Id

dt
(cos θ) = −θ̇ sin θ (12)

Set Eqs. (11) and (12) equal and cancel the common sin θ term to obtain

θ̇ = −
(

Id

dt
uh

)
· up − ω · (up × uh) (13)

Finally, rearrange Eq. (13) to isolate the term with ω:

θ̇ +

(
Id

dt
uh

)
· up = ω · (uh × up) (14)

Equation (14) would be most useful if the attitude (and thus up) were known. In the absence of attitude
knowledge, however, it is still possible to use the form of the equation to bound the magnitude of the
angular velocity. The unit vectors uh and up are orthogonal, so ‖uh × up‖ = 1. Let ωx ≡ ω · (uh × up) be
the component of ω orthogonal to both uh and up. (It is also orthogonal to un.) This is the only component

of ω that has an effect on glint rate θ̇, so it can also be thought of as the observable component of ω. Also,

−
∥∥∥ Id

dt uh

∥∥∥ ≤ ( Id
dt uh

)
· up ≤

∥∥∥ Id
dt uh

∥∥∥. The upper and lower bounds on |ωx| are thus given by:

|ωx|max = |θ̇|+
∥∥∥∥ Id

dt
uh

∥∥∥∥ (15a)

|ωx|min =

|θ̇| −
∥∥∥ Id

dt uh

∥∥∥ if |θ̇| >
∥∥∥ Id

dt uh

∥∥∥
0 if |θ̇| ≤

∥∥∥ Id
dt uh

∥∥∥ (15b)

The derivative norm
∥∥∥ Id

dt uh

∥∥∥ can be calculated using Eqs. (6)-(7). The glint rate θ̇ is estimated from the

glint duration, as described in Section III.

III. Angular Velocity from Glint Duration

In the absence of attitude control, the time history of the angle θ (t) near a glint event is well-approximated
by an hyperbola. (Even if attitude control is present, this is likely a good approximation in many cases.) The
angle θ (t) between uh and un tends to decrease at a relatively constant rate β until it nears the glint time
tg, transition smoothly through a minimum value of θg at tg, and then increase at the same constant rate β.
For a given set of surface properties, the angular width of glints is relatively constant. It can be specified by
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the “edge angle” θe, such that glints occur for times such that θ (t) ≤ θe. The times corresponding to the
glint edges are te1 and te2, and the overall glint width is ∆t = te2 − te1.

In cases without good attitude knowledge, the minimum angle θg is not known accurately. The true
θ hyperbola for a given glint is one of a family of hyperbolae parameterized by the minimum angle θg, as
illustrated in Fig. 2. For now, assume that θe and θg are known. This assumption will be addressed in

Figure 2. Family of hyperbolae for given θe and ∆t

Section IV. The hyperbolic shape of θ (t) makes it possible to derive an expression for the derivative θ̇ in
terms of θe, θg, and the glint width ∆t.

The hyperbola θ(t) is described by

θ2(t)

θ2
g

− (t− tg)
2

(θg/β)
2 = 1 (16)

or, in a more convenient form,
θ2(t) = θ2

g + β2 (t− tg)
2

(17)

One can derive an expression for the asymptotic slope β as a function of θe, θg, and the glint width ∆t by
substituting the point (te, θe) into Eq. (17) and solving for β2:

θ2
e = θ2

g + β2 (te − tg)
2

(18)

β2 =

(
θ2
e − θ2

g

)
(te − tg)

2 (19)

Assuming that |te1 − tg| = |te2 − tg| = 0.5∆t, the hyperbola is described by

θ2(t) = θ2
g +

4
(
θ2
e − θ2

g

)
∆t2

(t− tg)
2

(20)

The angular velocity bounds of Eq. (15) require the glint rate θ̇ at some given time t. One cannot use the
time of maximum glint, tg, for this purpose, because θ̇ goes to zero and Eq. (14) has a potential singularity
(in the case where un = uh, so that up is undefined). Instead, the glint edge times te1 and te2, which are

relatively easy to measure in a data set, are used. The glint rate θ̇ should have equal magnitudes at the two
edges. Therefore, taking the derivative of Eq. (20) and solving for θ̇:

2θθ̇ =
8
(
θ2
e − θ2

g

)
∆t2

(t− tg) (21)
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θ̇ =
4
(
θ2
e − θ2

g

)
θ∆t2

(t− tg) (22)

Evaluating Eq. (22) at (te, θe) gives

θ̇ (te) =
4
(
θ2
e − θ2

g

)
θe∆t2

(te − tg)

=
4
(
θ2
e − θ2

g

)
θe∆t2

∆t

2

=
2
(
θ2
e − θ2

g

)
θe∆t

=
2θe
∆t
−

2θ2
g

θe∆t
(23)

For a given θe, θg, and measured ∆t, Eq. (23) gives the value of θ̇ that can be substituted into the angular
velocity bound equations.

IV. Implementation Issues

While Eqs. (15) and (23) for calculating angular velocity bounds from glint duration are simple, there are
several difficulties that arise in implementation. First, it may be difficult to accurately measure the width of
a glint event in a real data set with irregularly spaced observations, gaps, noise, etc.— especially if the glint
is a shallow one. Second, the “edge angle” θe depends on the surface material properties of the reflecting
object. Such properties may be known poorly, if at all. Finally, the “glint angle” θg (the smallest angle
between un and uh for a given glint event) cannot be determined accurately without knowing something
about the object shape and attitude. Generally speaking, that information is not available in cases where
the angular velocity is completely unknown.

A. Incorporating Uncertainty

One simple approach to the aforementioned issues is to incorporate all the existing sources of uncertainty
directly into the angular velocity bounds. The form of Eq. (14) is such that only the component of ω
orthogonal to both uh and un is at all observable from glint rate, and only upper and lower bounds on that
component are possible without attitude knowledge. Suppose that the quantities ∆t, θe, and θg are also
known only to lie within some range: ∆tmin ≤ ∆t ≤ ∆tmax, θe,min ≤ θe ≤ θe,max, and θg,min ≤ θg ≤ θg,max.
Then the bounding values can be used in Eqs. (15) and (23) as necessary to create the most conservative
upper and lower bounds.

First, one must take this approach with Eq. (23) to find minimum and maximum values of θ̇ (te):

θ̇min (te) =
2θe,min

∆tmax
−

θ2
g,max

θe,min∆tmax
(24a)

θ̇max (te) =
2θe,max

∆tmin
−

θ2
g,min

θe,max∆tmin
=

2θe,max

∆tmin
(24b)

The final simplification in Eq. (24b) recognizes that the minimum possible value of θg is zero; this occurs for
the case of a full glint. When applying Eq. (24a), one must take care to use a consistent pair of values for
θe,min and θg,max: For a given glint, θe > θg because θg is by definition the minimum θ achieved during the
glint. In fact, θg must be sufficiently less than θe in order for any glint to be visible in the data.

Once θ̇min (te) and θ̇max (te) have been calculated, these values can be used within the conservative version
of Eqs. (15a) and (15b):

|ωx|max = |θ̇max|+
∥∥∥∥ Id

dt
uh

∥∥∥∥ (25a)

|ωx|min =

|θ̇min| −
∥∥∥ Id

dt uh

∥∥∥ if |θ̇min| >
∥∥∥ Id

dt uh

∥∥∥
0 if |θ̇min| ≤

∥∥∥ Id
dt uh

∥∥∥ (25b)
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B. Selecting θe and θg

The uncertainty associated with ∆t is largely determined by the quality of available data, and it is not difficult
to select reasonable bounds for this quantity. Even with the conservative bounds described in Section A,
it is necessary to have a reasonable starting point for the angles θe and θg if such values are not provided.
As described in the previous subsection, the choice of θe and θg cannot be completely independent. The
following discussion is not intended to be the final word on this subject, but it should provide some useful
guidelines.

Glints occur when one of an object’s facet normal vectors un gets close enough to the specular direction
uh that bright specular reflection dominates diffuse reflection. The range of angles within which this occurs
is known as the specular lobe, and the size of the specular lobe depends on the surface material and surface
finish associated with that facet. The more shiny and mirror-like a facet is, the smaller the size of the
specular lobe, and vice versa. The threshold angle for specular reflection is defined in this document as the
glint edge angle θe.

If one knows the reflecting object to be very shiny, a small value of θe can be used, and a large value
can be selected if the reflecting object is less mirror-like. In practice, it may be necessary to use a relatively
small θe,min and a relatively large θe,max to account for uncertainty (and in such cases, the angular velocity
bounds will not be tight). If many deep, distinct glints are observed in the data, it is likely that θe is small.
Conversely, the presence of only shallower, less-distinct glints suggests a larger value of θe.

For a given BRDF model, one can use simulations to empirically determine the typical values of θe for
a particular set of surface parameters. One such model is the Ashikhmin-Shirley BRDF model.13 Note
that although this model allows for anisotropic reflection, this paper’s discussion assumes isotropy. This
assumption is enforced by setting the parameters nu and nv equal; the resulting single parameter is herein
called nuv. In Ashikhmin’s model, the size of the specular lobe is controlled primarily by a single expression
in the numerator: (uh · un)

nuv .
Under the assumption of a relatively shiny facet with nuv = 1000, the angle θe has been found in

simulations to be roughly 0.13048 radians (7.476◦). This value is fairly consistent over multiple simulations
and observed glints, varying by roughly 1◦ at most. Rather than running new simulations and deriving an
empirical θe for each possible nuv, a scaling procedure is recommended. One would expect the glint threshold
to occur for roughly the same value of (uh · un)

nuv , regardless of the specific nuv. This expression can be
rewritten as (cos θ)

nuv . Let θe0 = 0.13048 radians and nuv0 = 1000 be “reference values”. Then

(cos θe)
nuv = (cos θe0)

nuv0

cos θe = (cos θe0)
nuv0
nuv

θe = cos−1
[
(cos θe0)

nuv0
nuv

]
(26)

Additional simulations for several different values of nuv such as 500 or 100 have indicated that this scaling
procedure is fairly successful at predicting the values of θ at the glint edges. The observed errors have
been similar to the level of variation seen in the simulations themselves. It is further conceivable that a
similar scaling procedure might be derived for a different BRDF model, provided one could isolate the terms
responsible for the size of the specular lobe.

Once upper and lower bounds for θe have been selected, one can consider θg. As previously mentioned,
the minimum possible value of θg is zero; this occurs during a full glint, when un and uh align perfectly. For
purposes of Eq. (24a), the maximum value is required—this value corresponds to a very shallow glint. In
order for any distinct glint to be visible in a light curve, θe must exceed θg by some minimum, non-negligible
amount.

In simulations using the Ashikhmin-Shirley BRDF model, the shallowest distinctly recognizable glints
for a given nuv were sought. For the nuv = 1000 case, such shallow glints were found to have a glint angle
of roughly θg = 0.10588 radians (6.066◦), or about 1.5◦ less than θe. As θe becomes larger, however, the
difference between θe and θg required to produce a clear glint also becomes larger. One reasonably successful
approach is to reprise the scaling procedure introduced for θe:

θg = cos−1
[
(cos θg0)

nuv0
nuv

]
(27)

where θg0 = 0.10588 radians and nuv0 = 1000 can be used as reference values.
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V. Results

The glint duration techniques described in the preceding sections were applied in several contexts: to
simulated light curves, data from a laboratory experiment, and data from the Galaxy 15 communications
satellite.

A. Results from Simulated Data

A number of truth model simulations were performed in order to determine reasonable rules of thumb for
selecting θe and θg. This subsection describes the results of one representative simulation in detail.

For the simulated scenario, the reflecting object is a shiny rectangular prism (with BRDF parameters
Rspec = 0.7, Rdiff = 0.3, and nuv = 1000). The object’s orbit is near, but not exactly, geostationary, and
it tumbles with an average angular rate of 3.8 × 10−3 radians/second. One distinct glint was observed in
the light curve during the first 10 minutes of simulated time, as shown in Fig. 3. The glint duration ∆t

Figure 3. Simulated light curve with glint

was roughly 62 seconds. Assuming that the parameter nuv = 1000 is fairly well-known for this case, 0.1305
radians was selected as the glint edge angle θe (with no uncertainty), and 0.1059 radians was selected as the
maximum glint angle θg,max. The minimum and maximum glint widths were chosen as ∆tmin = 58 seconds
and ∆tmax = 66 seconds.

Application of Eqs. (24a) and (24b) gives the minimum and maximum glint rates θ̇min = 1.35 × 10−3

rad/sec and θ̇max = 4.50 × 10−3 rad/sec. These values are in turn used to evaluate Eqs. (25a) and (25b).

The magnitude of ‖
Id
dt uh‖, the inertial derivative of uh, was found to be approximately 3.66× 10−5, so the

bounds on the observable component of ω are |ωx|min = 1.31 × 10−3 rad/sec and |ωx|max = 4.54 × 10−3

rad/sec. For comparison, the true (simulated) value of the observable component of ω at the glint edges was
found to be 3.57 × 10−3 rad/sec, which lies well within the computed bounds. In this particular example,
the overall angular velocity magnitude also falls within the bounds, but that is not always the case. The
angular velocity results are summarized in Table 1.

Table 1. Summary of results for simulated light curve

∆t 62 sec

|ωx|min 1.31× 10−3 rad/sec

|ωx|max 4.54× 10−3 rad/sec

|ωx|true 3.57× 10−3 rad/sec

‖ω‖true 3.80× 10−3 rad/sec
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B. Results from Experimental Data

A series of laboratory experiments were conducted to create synthetic light curves for some well-characterized
test objects. In each experiment, a light source was focused on the test object, which rotated on a turntable.
Other sources of light and reflection were eliminated. A series of images was collected by a camera, and
the light curve was constructed by calculating the total brightness in the image pixels at each time step.
The size and shape of the test objects, and locations of the object, camera, and light source, were found by
measuring.

One of the test objects which exhibited distinct specular glints was a flat, relatively shiny piece of sheet
metal. The corresponding light curve is shown in Fig. 4. As the light source, object, and camera were all

Figure 4. Experimental light curve with multiple glints

at fixed locations, the glint angle uh was constant and its derivative was zero in the inertial frame. The
average glint duration over the data set was ∆t = 29.25 samples. (The camera sampling interval was used
for the time units.) It was possible to calculate the glint edge angles θe from the known configuration and
object rotation angles: On average they were about θe = 0.416 radians (23.8◦). Using the scaling procedure
in Eq. (26), this corresponds to a parameter of nuv = 95.87. For this nuv, Eq. (27) suggests θg,max = 0.339
radians (19.42◦). The actual average θg for this experiment was 0.201 radians (11.51◦), so the estimated
θg,max is quite conservative. A glint duration uncertainty of ±2 samples was assumed.

The glint rate bounds were found from Eq. (24) to be 8.96 × 10−3 ≤ θ̇ (te) ≤ 3.07 × 10−2 rad/sample.

As ‖
Id
dt uh‖ = 0 for this case, the bounds on the observable component of angular velocity were exactly the

bounds on θ̇: 8.96 × 10−3 ≤ |ωx (te) | ≤ 3.07 × 10−2 rad/sample. The true magnitude of the observable
component of ω was |ωx| = 2.19 × 10−2 rad/sample, and the magnitude of the overall rotation rate was
‖ω‖ = 2.55× 10−2 rad/sample. Table 2 summarizes these results.

Table 2. Summary of results for experimental light curve

∆t 29.25 samp

|ωx|min 8.96× 10−3 rad/samp

|ωx|max 3.07× 10−2 rad/samp

|ωx|true 2.19× 10−2 rad/samp

‖ω‖true 2.55× 10−2 rad/samp

C. Results from Galaxy 15 Data

The glint duration algorithms were also applied to real light curve data from the Galaxy 15 communications
satellite. Galaxy 15 is nominally geostationary and nadir-pointing, but no detailed shape model or attitude
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history were ever provided, so it was not possible to compute “true” values of the angle θ or related quan-
tities. The nominal angular velocity for the nadir-pointing configuration was computed. Surface reflection
parameters were not given.

The light curve exhibited a dominant deep “V” shape of increased brightness due to the relative motion
of the Sun, but it was not possible to clearly identify a specular glint within this region. In addition, however,
there were five smaller distinct glints, as indicated in Fig. 5. The average duration of these glints was about
550.5 seconds, and the corresponding bounds were computed. The results presented here are the averages
over the five glint events.

Figure 5. Galaxy 15 light curve with small glints

The angular velocity bounds were computed under several different assumptions for the reflection pa-
rameter nuv. Large values of nuv (more mirror-like reflection) give conservative lower bound estimates for
|ωx|, and smaller values of nuv give conservative upper bound estimates. Assuming nuv = 1000, the lower
bound on the observable part of ω is |ωx|min = 1.24 × 10−4 rad/sec. Of course, this is also a lower bound
on the magnitude of the overall vector ω. For an assumption of nuv = 100, the computed upper bound
was |ωx|max = 1.84 × 10−3 rad/sec. In comparison, the magnitude of the nominal angular velocity for the
geostationary, nadir-pointing configuration is ‖ω‖nom = 7.29× 10−5 rad/sec. These results are summarized
in Table 3.

Table 3. Summary of results for Galaxy 15 light curve

∆t 550.5 sec

|ωx|min 1.244× 10−4 rad/sec

|ωx|max 1.840× 10−3 rad/sec

‖ω‖nom 7.290× 10−5 rad/sec

Note that the nominal angular velocity magnitude is about half that of the conservative lower bound
calculated from the glint widths. There are several possible explanations for this discrepancy. The most
obvious conclusion is that the observed glints are caused by some form of attitude maneuvers - such as periodic
solar panel rotations intended to keep the solar panels in an approximately sun-pointing configuration.
Before accepting that hypothesis, it is wise to look at previous analyses of the Galaxy 15 light curve.14,15

Reference 15, in particular, examines these “faint glints” in depth, and concludes that the shift in glint epoch
time from day to day is consistent with glints from components mounted on the main bus, rather than the
solar panels. As shown here, the duration of the glints strongly suggests that these components are moving.
Alternatively, the glinting components may not conform to the theoretical glint width because they fail to
satisfy the “flat facet” assumption and are in fact cylindrical or more complex in shape.

This case indicates the power of the proposed analysis: While it cannot determine angular velocity in
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any exact sense, measurements of glint width can be used to identify non-nominal behavior or changes in
behavior, even when details like attitude and shape are poorly known.

VI. Conclusions

In this paper, a technique was developed that constrains the magnitude of SO angular velocity based
on the time duration of specular glint events. The algorithm derives a set of equations that relate the
observable part of the sidereal angular rate to the derivative of the angle between the phase angle bisector
and the normal vector of the reflecting facet. An additional derivation relates this derivative to the observed
glint width. Uncertainties in the form of upper and lower bounds on measured or assumed quantities can
be easily incorporated. This paper’s method is applied to data from three sources: simulations, laboratory
experiments, and a real satellite. The computed bounds successfully bracketed the observable component
of angular velocity in all cases for which the “truth” was available for comparison, although in many cases
the bounds were not very tight. However, even such limited rate information may be useful in detecting
anomalous rate behavior, or in selecting a reasonable initial rate estimate for a Kalman filter.
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