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This paper discusses a dynamic observability analysis for attitude, angular ve-
locity, shape, and surface parameters of Space Objects (SOs) using non-resolved
images or light curve measurements. The Fisher information matrix and Cramér-
Rao lower bound are introduced for calculating the observability of parameters
used in SO models. Light curve measurements are known to be functions of SO
rotational states, shape geometry, and surface parameters. This dependency is cap-
tured in the bidirectional reflectance distribution functions models. The rotational
dynamics of SOs can be difficult to model due to the fact that external and/or
control torques are unknown. This work assumes that these torques are known,
and under this assumption dynamic observability is analyzed. An illustrative two-
dimensional example is considered. This example consists of a simplified system
with one angle and one angle rate to model the rotational dynamics of the SO. The
Cramér-Rao lower bound is used to study the effects of geometry on estimation
performance. It was found that as the number of sides increases, and the SO shape
tends to an axially symmetric one, the observability in the attitude estimates are
lost. Finally, the Cramér-Rao lower bound is compared with actual performances
from estimation approaches for estimating the attitude of an SO.

INTRODUCTION

Space Situational Awareness (SSA) is concerned with collecting and maintaining knowledge of

all objects orbiting the Earth. The U.S. Air Force collects the necessary data for space object catalog

development and maintenance through a global network of radars and optical sensors. Some of

these sensors are powerful ground-based telescopes that can resolve large Space Objects (SOs) in

Low Earth Orbits (LEOs) such as the Hubble Space Telescope and the International Space Station

to high detail. Unfortunately, most objects are too small and/or too distant to lend themselves

to ground-based resolved imaging; such classes of objects are labeled as “unresolved objects.” In

particular, SOs in Geosynchronous Orbits (GEOs), “micro” and “nano” satellites are too small to

be resolved using ground-based optical telescopes, and fall under the class of unresolved objects.

These unresolved objects are critical to SSA; they are important due to the threat they pose on active

space objects, and characterizing them can be challenging.

In order to understand the nature and eventually the origin of these objects, physical character-

istics such size, shape and material composition are required. These characteristics may be used
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to provide identification attributes, and can also be obtained from existing data sources such as

photometric and astrometric data.? To investigate the surface material properties reflectance spec-

troscopy data can be used.? Reflectance spectroscopy or multi-band photometric data can be used

to study non-resolved debris objects and determine their material composition.? The measurements

made of debris objects can be compared to laboratory derived measurements to determine material

composition of the debris.?, ?, ?

Brightness is a function of the phase angle and can provide information on such things as: ag-

ing, material properties, shape classes, solar panel offsets and change analysis. For detailed surface

material characterization, spectrometric and/or multi-band photometric measurements are generally

required. Wavelength dependent photometric properties for materials, such as solar array panels,

milled aluminum, anodized aluminum, multi-layer insulation and white paint, are available as part

of the Time-domain Analysis Simulation for Advanced Tracking (TASAT)? signature simulation

software package. Many of these show telltale signs of spectral features that can be used as finger-

prints to identify the material composition of satellite surfaces in solar reflectance spectra. These

spectral features will have the maximum observability at the glint configuration since glinting has

very high magnitude spectral reflectance.

Optical signatures can be used to provide information about the SO. The phase angle is a variable

of interest when reporting the brightness for SOs. The phase angle is the angle between the direction

to the Sun and the direction to the observer, as seen at the object being observed. If the object is

the Moon, a zero phase angle corresponds to a full Moon; at this angle the most light is reflected

to the observer. Therefore when observing SOs, the maximum irradiance will occur at minimum

phase angle. Non-resolved photometric data have been studied as a mechanism for space object

characterization. Photometry is the measurement of an object’s flux or apparent brightness measured

over a wavelength band. The temporal variation of photometric measurements is referred to as

photometric signature. The photometric optical signature of an object contains information about

shape, attitude, size and material composition.?, ?, ?, ?, ? The goal of this paper is to use the Fisher

Information Matrix and Cramér-Rao inequality to provide a lower bound on the expected estimation

error for these quantities.

FISHER INFORMATION MATRIX

The Cramér-Rao inequality provides a lower bound on the expected error between an estimated

quantity and the true quantity. The Cramér-Rao inequality is given by the following expression

P ≡ E
{

(x̂− x) (x̂− x)T
}

≥ F−1 (1)

where the matrix F is the Fisher Information Matrix (FIM) and x̂ is an estimate of the true value

x. The variable x̂ is a random variable with probability distribution function (pdf) p(x̂). The E {·}
operator is the expectation of the argument with respect to the pdf p(x̂), where this expectation for

continuous variables can be written as

E {g(x)} =

∫ ∞

−∞
g(x)p(x)dx (2)

The likelihood function, p(ỹ|x), of the measurement ỹ given x for the Fisher information matrix is

given by

F = E

{[
∂

∂x
log p(ỹ|x)

] [
∂

∂x
log p(ỹ|x)

]T
}

(3)
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The FIM can also be computed using the Hessian of the negative log likelihood function, given by

F = E

{
∂2

∂x∂xT
L(ŷ|x)

}

(4)

where L(ỹ|x) = − log {p(ỹ|x)}. If the measurement likelihood is a Gaussian distribution and

the measurement relationship is given by ỹ = h(x) + v, where v is measurement noise, which is

assumed to be zero-mean with covariance R, then L(ỹ|x) becomes

L(ỹ|x) = 1

2
[ỹ − h(x)]R−1 [ỹ− h(x)]T (5)

Then the FIM is calculated from Equation (??):

F = E

{
∂2

∂x∂xT
L(ŷ|x)

}

= E

{

∂h(x)

∂x
R−1∂h(x)

∂x

T
}

(6)

If the pdf p(x̃) is assumed to be Gaussian then the expression from Equation (??) is given by

F =
∂h(x)

∂x
R−1∂h(x)

∂x

T
∣
∣
∣
∣
∣
x=xtrue

(7)

So far this model assumes one measurement vector but this can be extended to multiple vector

measurements of the variable x denoted by Y = [ỹ1, ..., ỹm]. Then the observation function might

be different for each measurement giving the following relationship:

ỹk = hk(x) + vk k = 1, . . . ,m (8)

where vk is still a zero-mean Gaussian noise process. This model can represent measuring the same

state vector at different time steps and therefore the index k can represent a time index assuming

x is constant over time. Measurements might be correlated in this case, and thus we can write a

collective measurement noise vector V = [v1, . . . ,vm]T with covariance R̄ = E
{
VVT

}
. If the

measurements are correlated the Fisher information matrix is given by

F =
∂h̄k(x)

∂x
R̄−1

k

∂h̄k(x)

∂x

T
∣
∣
∣
∣
∣
x=xtrue

(9)

where h̄k(x) = [h1(x), . . . ,hm(x)]T , and if the measurements are not correlated the FIM is given

by

F =
m∑

i=1

∂hi(x)

∂x
R−1

i

∂hi(x)

∂x

T
∣
∣
∣
∣
∣
x=xtrue

(10)

Now we assume that the true state x is time varying and follows the following ordinary differential

equation:

ẋ = f(x, t) (11)

The solution flow in terms of the initial condition can be written as x(tk) = φ(x0, tk, t0). Then for

the case of a time-varying state the measurement function can be written as

ỹ (tk) = h (φ(x0, tk, t0)) + v(tk) tk = t1, . . . , tm (12)
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Figure 1. Reflection Geometry

Then the FIM can be written as?

F =

m∑

i=1

Φ(tk, t0)
∂h(φ)

∂φ
R−1

k

(

Φ(tk, t0)
∂h(φ)

∂φ

)T
∣
∣
∣
∣
∣
x=x0 true

(13)

where the function ∂φ
∂x0

is often referred to as the state transition matrix and can be written as

Φ(tk, t0) ≡ ∂φ
∂x0

. Finally for this nonlinear dynamical system the Cramér-Rao lower bound (CRLB)

covariance is given by

P =

(
m∑

i=1

Fi

)−1

(14)

where the Fi are the individual FIM for each measurement. Using the Fi can give us an indication of

the information that a measurement contributes to each state. The Fi matrix may not be full rank but

it can still be used to study the information geometry of the system for an individual measurement

or a sequence of measurements by studying the eigen-structure of Fi. We also consider parametric

states in this analysis.

Review of Bidirectional Distribution Functions

A number of bidirectional reflectance distribution functions (BRDFs) exist in the literature. These

models are based on the BRDF that models light distribution scattered from the surface due to the

incident light. The BRDF at any point on the surface is a function of two directions, the direction

from which the light source originates and the direction from which the scattered light leaves the

observed the surface. These models include Ashikhmin-Shirley,? a simplified Blinn-Phong,? and

Cook-Torrance? to list some. The BRDF models how light energy reflects off of surfaces and how

this reflected energy is distributed in varios directions. The brightness of an object in space can be

modeled using an anisotropic Phong light diffusion model.?

The model in Ref. ? decomposes the BRDF into a specular component and a diffuse component.

The two terms sum to give the total BRDF:

ρtotal(i) = ρspec(i) + ρdiff(i) (15)

The diffuse component represents light that is scattered equally in all directions (Lambertian) and

the specular component represents light that is concentrated about some direction (mirror-like).
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Reference ? develops a model for continuous arbitrary surfaces but simplifies for flat surfaces. This

simplified model is employed in this work as shape models are considered to consist of a finite

number of flat facets. Therefore the total observed brightness of an object becomes the sum of the

contribution from each facet:

fr = (dRd + sRs) (16)

which depends on the diffuse bidirectional reflectance (Rd), the specular bidirectional reflectance

(Rs), and the fraction of each to the total (d and s respectively where d+s = 1). These bidirectional

reflectances are calculated differently for the various models. In each model, however, c = uI
obs

T
uI
h

(geometry shown in Figure ??), ρ is the diffuse reflectance (0 ≤ ρ ≤ 1), and F0 is the specular

reflectance of the surface at normal incidence (0 ≤ F0 ≤ 1). To be used as a prediction tool for

brightness and radiation pressure calculations, an important aspect of the BRDF is energy conser-

vation. For energy to be conserved, the integral of the BRDF times cos (θr) over all solid angles in

the hemisphere with θr ≤ 90 needs to be less than unity, with

∫ 2π

0

∫ π/2

0
fr cos (θr) sin (θr) dθrdφ = Rd +Rs (17)

For the BRDF given in Eq. (??), this corresponds to constant values of Rd = dρ and Rs = sF0.

The remaining energy not reflected by the surface is either transmitted or absorbed. In this paper it

is assumed the transmitted energy is zero. A review of the various BRDS functions is provided in

Table ??.

Ashikhmin-Shirley BRDF: In addition to d, ρ, and F0, the Ashikhmin-Shirley BRDF has two

exponential factors (nu, nv) that define the reflectance properties of each surface. The Ashikhmin-

Shirley diffuse and specular reflectivities are not constant, however, but rather complicated functions

of illumination angle, exponential factor, and the diffuse and specular reflectances. In all cases,

however, Rd +Rs ≤ 1, so energy is conserved.

Blinn-Phong: The specular bidirectional reflectance of the original Phong model is proportional

to
(

uI
n
T
(i)R

)n
, where R is the perfect mirror-like reflection of uI

sun
T

. Blinn? proposes that uI
h be

used instead of R to make it easier and faster to calculate. Unfortunately, both versions of the model

do not conserve energy and thus are unsuited for the purposes of brightness estimation. The model

can be made to conserve energy, however, by modifying the leading term. In keeping with the desire

for simplicity in this model, the leading term is chosen to only be a function of the exponential factor

and set to yield a reflectivity equal to the mirror-like reflection of Eq. (3) at normal illumination. In

addition to d, ρ and F0, the simplified Blinn-Phong BRDF has a single exponential factor (n) that

defines the reflectance properties of each surface.

Cook-Torrance BRDF: This model has the facet slope distribution function (D), the geometrical

attenuation factor (G) and the reflectance of a perfectly smooth surface (F ) with g = n2 + c2 − 1

and the index of refraction n = 1+
√
F0

1−
√
F0

. In addition to d, ρ, and F0, the Cook-Torrance BRDF has

a facet slope (m) parameter that defines the reflectance properties of each surface. The facet slope

parameter of the Cook-Torrance BRDF and the exponential factor of the Ashikhmin-Shirley and

Blinn-Phong BRDFs are roughly related by n = 2/m2.
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Table 1. Review of Bidirectional Distribution Functions

Lambertian Rd = ρd
π

Rs = 0

non-Lambertian diffuse Rs = 0

Rd = F0

(

1−
(

1− uI
n
T
(i)uI

sun/2
)5
)(

1−
(

1− uI
n
T
(i)uI

obs/2
)5
)

Ashikhmin-Shirley F = F0 +
(
1
s − F0

)
(1− c)5

Rd = 28ρ
23π (1− sF0)

(

1−
(

1− u
I
n
T
(i)uI

sun

2

)5
)(

1−
(

1− u
I
n
T
(i)uI

obs

2

)5
)

Rs =

√
(nu+1)(nv+1)

8π
F

cmax[uI
n
T (i)uI

sun,u
I
n(i)u

I
obs]

(cos (α))nu cos2(β)+nv sin2(β)

Cook-Torrance Rd = ρ/π

D = 1
πm2 cos4 αe

tan(α)/m2

G = min

{

1,
2
(

uI
n
T
(i)H

)(

uI
n
T
(i)uI

obs

)

uI
obs

T
H

,
2
(

uI
n
T
(i)uI

sun
T
)(

uI
n
T
(i)H

)

uI
obs

T
H

}

F = (g−c)2

2(g+c)2

{

1 + [c(g+c)−1]2

[c(g−c)+1]2

}

Rs =
DGF

4(uI
n
T (i)uI

sun)(uI
n
T (i)uI

obs)

Blinn-Phong Rd = ρd
π

Rs = (1− d)
(
F0(n+2)(n+4)

8π(n+2−n/2)

)(

uI
n
T
(i)uI

h

)

Light Curve Model Partial Calculation

In this section the partials of the light curve model with respect dynamic and parametric states

are calculated. The state vector can be written as

xT = [P(1)T . . . P(NF )
T S(1)T . . . S(NF )

T DT OT ] (18)

where P, S , D, and O represent the shape, surface scattering, rotational and orbital parameters, re-

spectively. The relevant parameters that go into these sets are defined by P(i) = [A(i) φ(i) g(i)]T ,

S(i)T = [Rspec(i)
T Rdiff(i)

T nu(i) nv(i)], DT = [qB T
I ωB

B/I

T
], and OT = [rI

T
vIT ].

Here it is assumed the arrangement of the facets and their normal vectors is known, and therefore

only A(i) is needed to describe the shape. The following notation is used to represent partial of

each parameter set with respect to the state vector:

∂x

∂S =
[
03×3 I3×3 03×(n−6)

]
(19)

where similar expressions are written for P, D, and O, where n denotes the size of the state vector.

The number of parameters depends on modeling of the SOs, mainly the number sides, and relevant

parameters used in the light curve model. The parameters used for shape and the light curve model
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might change based on application, and therefore there are many choices for these parameters. This

work focuses on the Ashikhmin-Shirley model.

Typically, small Euler angles are used to parameterize the attitude matrix when preforming error

analysis. The attitude linearization has been shown to be valid for the case of small attitude errors,?

which is also assumed here. The noise linearization will produce an accurate covariance expression

for large signal-to-noise ratios; even with errors of 1 degree this is not a concern.? The attitude

matrix can be parameterized by vector of angle errors, δα, mapping the true attitude to the estimated

attitude:

Â = exp {−[δα×]}Atrue (20)

The matrix exponential can be expanded in a Taylor series

exp {−[δα×]} =

∞∑

n=0

1

n!
(−[δα×])n ≈ I3×3 − [δα×] (21)

Keeping only the first order term gives the following approximation:

Â = exp {−[δα×]}Atrue ≈ (I3×3 − [δα×])Atrue (22)

Substituting this approximation into uI
n(i) = ÂuB

n (i) gives

uI
n(i) = Atrue

T (I3×3 + [δα×])uB
n (i) (23)

The partial with respect to the state vector is then

∂uI
n(i)

∂x
= −Atrue

T [uB
n (i)×]

∂δα

∂x
(24)

The partial of the vector uI
sun with respect to the state vector involves taking the partial with respect

to the position vector. It is assumed that the position of the SO is known for this work, and therefore

uI
sun and uI

obs are known. The magnitude function partial derivative with respect to the state variables

can be written as the following:

∂mapp

∂x
= − 2.5

Fobs ln(10)

∂Fobs

∂x
(25)

Note that since one can use the flux directly as a measurement the term ∂F
∂x might only represent the

measurement function partial. The flux partial can be expanded for any of the light curve models

discussed earlier, the final expressions will not be shown here but are shown in Ref. ?. For illustrative

purposes a simple light curve model can be analyzed assuming that the object consists of a collection

of N facets with only diffuse reflection and a non-Lambertian BRDF model given in Table ??. The

energy flux as seen by an observer can be written as

f(θ, t) =
N∑

i=1

Φsun,vis

πr2
αd(i)C

(
uI

sun(t)
TA(t)uB

n (i)
) (

uI
obs(t)

TA(t)uB
n (i)

)
(26)

where

C =
(

1−
(
1− uI

sun(t)
TA(t)uB

n (i)/2
)5
)(

1−
(
1− uI

obs(t)
TA(t)uB

n (i)/2
)5
)

(27)
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Then under the faceted model assumption, and only considering diffusion reflection the albedo

normalized shape of the SO can be described by the collection of αd(i) and uB
n (i). The unit vector,

uB
n (i), can parameterized with two angles φi and gi. Then uB

n (i) is given by

uB
n (i) =







cos(φi)
√

1− g2i

sin(φi)
√

1− g2i
gi







(28)

Then the FIM can be calculated by

F (θ) =
1

σ2
m

m∑

i=1

[
∂

∂θ
f(θ, ti)

]T [ ∂

∂θ
f(θ, ti)

]

(29)

where the form of the FIM will depend on the contents of the state vector, θ, and the light curve

model used. The partial derivatives of the simplified measurement function are calculated as

∂

∂θ
f(θ, ti) =

[
∂

∂ω
,

∂

∂αd(1)
,

∂

∂g1
,

∂

∂φ1
, · · · , ∂

∂αd(N)
,

∂

∂gN
,

∂

∂φN

]T

f(θ, ti) (30)

Then the rest of the partial derivatives are as follows:

∂

∂αd(i)
f(θ, ti) =

zq

π
C (31a)

∂

∂φi
f(θ, ti) = C1u

I
obs(t)

[
∂

∂φi
uB
n (i)

]

+ C2u
I
sun(t)

[
∂

∂φi
uB
n (i)

]

(31b)

∂

∂gi
f(θ, ti) = C1u

I
obs(t)

[
∂

∂gi
uB
n (i)

]

+ C2u
I
sun(t)

[
∂

∂gi
uB
n (i)

]

(31c)

C1 =
αd(i)

π

[
5

2
zq
(

1− (1− z/2)4
)(

1− (1− q/2)5
)

+ Cq

]

(31d)

C2 =
αd(i)

π

[
5

2
zq
(

1− (1− z/2)5
)(

1− (1− q/2)4
)

+ Cz

]

(31e)

[
∂

∂φi
uB
n (i)

]

=

[

−gi sin(φi)
√

1− g2i , cos(φi)
√

1− g2i , 0

]T

(31f)

[
∂

∂gi
uB
n (i)

]

=
[

−gi cos(φi)
(
1− g2i

)−1/2
, −gi sin(φi)

(
1− g2i

)−1/2
, 1

]T
(31g)

where z and q are given by q =
(
uI

sun(t)
TA(t)uB

n (i)
)

and z =
(
uI

obs(t)
TA(t)uB

n (i)
)
, respectively.

ROTATIONAL DYNAMICS

In terms of the quaternion, the attitude matrix is given by

A(q) = ΞT (q)Ψ(q) (32)

where

Ξ(q) ≡
[
q4I3×3 + [̺×]

−̺T

]

(33a)

Ψ(q) ≡
[
q4I3×3 − [̺×]

−̺T

]

(33b)
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with

[a×] ≡





0 −a3 a2
a3 0 −a1
−a2 a1 0



 (34)

for any general 3× 1 vector a defined such that [a×]b = a× b. This representation is constrained

since the quaternion is of unit length and therefore qTq = 1. The kinematics dynamics are given

by a first-order differential equation:

q̇ =
1

2
Ξ(q)ω (35a)

ω̇B
B/I = J−1

SO

(

−
[

ωB
B/I×

]

JSOω
B
B/I

)

(35b)

Then the rotational dynamics is linearized by considering first order terms and small angle approx-

imation:?

δα̇ = −
[

ω̂B
B/I×

]

δα+ ωB
B/I (36a)

ω̇B
B/I = J−1

SO

(

−
[

JSOω̂
B
B/I×

]

+
[

ω̂B
B/I×

]

JSO

)

ωB
B/I (36b)

where ω̂B
B/I is the true angular velocity about which the equations are linearized. Using the lin-

earized equations above the state transition matrix can be calculated for a time step of ∆t using the

matrix exponential. Then Eq. (??) can be written in state space form as

[

δα̇

ω̇B
B/I

]

=




−
[

ω̂B
B/I×

]

I3×3

03×3

(

−
[

JSOω̂
B
B/I×

]

+
[

ω̂B
B/I×

]

JSO

)





︸ ︷︷ ︸

F

[

δα

ωB
B/I

]

(37)

The dynamic equations are linearized at the time of each measurement, and the linear dynamic

matrix, F , is used to calculate the state transition matrix between tk and tk−1. In general, F can be

taken to be a time-varying form tk−1 to tk but for this work it is approximated as constant since the

time between measurements, ∆t, is expected to be small. Then the state transition matrix for the

dynamic state is given by

Φ(tk, tk−1) = exp {F (tk−1)∆t} (38)

where F (tk−1) is linearized about the time of the previous measurements and then state transition

matrix given in Eq. (??) is calculated as

Φ(tk, t0) =
k∏

i=1

Φ(ti, ti−1) (39)

Finally, the CRLB can be calculated using Eq. (??) and the light curve models discussed earlier.

OBSERVABILITY ANALYSIS FOR LIGHT CURVE MEASUREMENTS

Using light curves for satellite orientation and surface parameter estimation has many inherent

challenges. This section studies this problem, and first presents a simplified state model to highlight

some of these challenges. First a simple two-dimensional model with one orientation angle and
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one angular rate state is shown. This simplified model is used to show the challenges that object

symmetry poses specifically to the light curve process.

The benefit of studying this simplified system is that one can remove the nonlinearities from the

dynamic equations, and therefore isolate the nonlinearity in the measurements equations, i.e. the

light curve model. After the simplified cases are shown the same nonlinear estimation techniques

are studied to process light curves for satellite orientation and surface parameter estimation. New

challenges are present for the full-state model, including the many nonlinearities in the dynamic

equations and high degree of freedom for the desired parameters.

Analysis of Lambertian Model

The Lambertian BRDF model, given in Table ??, is a simple light curve model which only ac-

counts for pure Lambertian reflection (equal reflection is all directions). The energy flux as seen by

an observer given the Lambertian can be written as

f(θ, ti) =

N∑

i=1

Φsun,vis

πr2
αd(i)z(ti)q(ti) (40)

Let us assume that the flux is normalized such that yi = f(θ, ti)πr
2/Φsun,vis, and for simplicity

let us consider a one facet model where N = 1 and A = I3×3. If it is assumed that uI
obs = uI

sun

and uI
obs = [1 0 0]T then the relationship between αd(i) and g can be analyzed. Under these

assumptions the following relation exists: q(ti) = z(ti), and if the angle φ is neglected the angle

between uI
obs and uI

n(i) can be written as uI
n
T
(i)uI

obs =
√

1− g2. Then the normalized flux yi is

given by

yi = αd(u
I
n
T
(i)uI

obs)
2 (41)

Note that (uI
n
T
(i)uI

obs)
2 = 1 − g2, and therefore a direct relationship between g and αd can be

determined:

αd =
yi

1− g2
(42)

This relationship is surprisingly accurate, which can approximate the general trend between αd

and g for more complex models. The Lambertian term is included in all models, and therefore this

relationship is seen in all models to some extent. In a similar manner relations between φ and αd can

be found given by αd = yi
cos2(φ)

. Considering the effect of both parameters under these assumptions

yeilds

αd =
yi

cos2(φ) (1− g2)
(43)

Figure ?? shows both of these relationships for yi = 1. From the Figure it is clear that for a single

measurement a facet of albedo areas given by Eq. (??) are all equally likely. To see the accuracy of

these relationship for more complex models the likelihood function using a single pass observation

geometry is considered. The geometry is such that uI
n
T
(i) rotates on the x-y plane from the −y

direction to the +y direction, and there is no motion in the z direction. The Sun direction is held

constant at uI
sun = [1 0 0]T .

Figures ?? and ?? show the loglog of the target density for a single pass. Figure ?? shows the

target density in the θ-g space. From this figure it can be seen that the location of the facet is

weakly observable in the direction perpendicular to the pass. The location has high variation in the

g direction and smaller variation is the θ direction. Figure ?? shows the target density in the θ-a
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Figure 3. Contour of Likelihood Function

space. Here it is seen that the target density is highly non-Gaussian. From this figure it is clear that

for a true location of g = 0, the measurement can be reproduced by a high value of g with a larger

area. Increasing g results in a larger angle between the observer and the normal, but by increasing

the area the effect of increasing this angle can be negated.

Simple Two-Dimensional State Model

To study the effects of shape on the resulting light curve, a simplified scenario is considered.

Here, we consider prismatic shape models are consideredwith varying number of sides n, where

n ≡ NF − 2. The orientation of the models are such that the B3 direction is aligned with inertial î3
axis, where {̂i1, î2, î3} defines the basis of the inertial reference frame. The models are allowed to

rotate only about the B3 axis with the angle of rotation defined by θ. The rate of rotation is given

by ω = θ̇, and is assumed to be constant. Figure ?? shows the geometry of the simple test case.

The Sun vector uI
sun and observer direction vector uI

obs are defined to lie in the î1 − î2 plane. The

dynamic model is summarized as

θ̇ = ω (44a)

ω̇ = 0 (44b)
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Then the system and measurement equations can be written in the following form:

ẋ = Fx (45a)

ỹ = h (x,p) + v (45b)

where

F =

[
0 1
0 0

]

(46)

and h (x,p) is the nonlinear light curve measurement function. Here p is a vector of the light curve

model parameter, such as shape and surface parameters. Then the state transition matrix for this

simple example is given by Eq. (??).

Shape Geometry Effect

The shape model of the SO influences the attitude estimate and orientation parameter observabil-

ity. For example axially symmetric bodies are expected to have no observability for the rotation

12



about the axis of symmetry, since reflection properties are invariant for rotation about this axis of

symmetry. To study this effect, the number of sides n is varied, n ∈ {3, 4, 5, 6, 10, 20, 40}. The

simulated light curves can be seen in Figure ??. Figures ?? and ?? show the true flux and magnitude

respectively. From these figures one can see that as the number of sides increases the light curves

increase in frequency and are modulated. This effect also highlights the fact that for a given light

curve the number of sides cannot be confused with the angular frequency since as the sides increase

the brightness flotation magnitude is decreased or modulated. One can also see that the fluctuations

are smaller but the mean signal increases. This is due to the fact that as the number of sides in-

creases more sides tend to contribute to the brightness at a given orientation and therefore increases

the overall brightness. Also, since the fluctuation becomes smaller it is more difficult to estimate

the attitude since the signal-to-noise ratio of the fluctuations is low. Clearly, then as n → ∞ the

faceted regular prism model becomes a cylinder, at which point the attitude becomes unobservable

due to axial symmetry about the axis of rotation.

To further investigate the effect of geometry, an observability study is conducted using the Cramér-

Rao lower bound shown in Eq. (??). The Fisher information matrix is calculated from Eq. (??), and

then the covariance is computed from the CRLB for each case by P = F−1. In each case, an

initial covariance is set to 25 degs for the attitude angle and 1500 deg/hr for the angular velocity.

The partial derivative of the light curve model is computed using the equations discussed earlier.

Figure ?? shows the attitude estimation CRLB obtained from the light curve data from Figure ??.

It is clearly seen that the estimator takes longer to converge for larger values of n consistent with

diminishing observability. This analysis shows that as objects tend to smoother shapes with more

symmetry attitude estimation observability is lost.
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Figure 6. Test Case Cramér-Rao Lower Bound

CONCLUSION

In this paper, the Fisher information matrix and Cramér-Rao lower bound are introduced for

calculating the observability of parameters used in Space Object (SO) models. The models used for

photometric and astrometric data fusion were also introduced. Faceted shape models are discussed

and the shape model geometry was introduced. The bi-directional distribution function models were
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summarized and its partial calculation are given. An illustrative two-dimensional example was first

considered. This example consisted of just one angle and one angle rate in the estimation problem.

Using the Cramér-Rao lower bound the effects of geometry on estimation performance was studied.

It was found that as the number of sides increases the SO tends to a axially symmetric object and

the observability in the attitude estimation process is lost.
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