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This paper presents a method to determine the shape of a space object while si-
multaneously recovering the observed space object’s inertial orientation. This pa-
per employs an Adaptive Hamiltonian Markov Chain Monte Carlo estimation ap-
proach, which uses light curve data to infer the space object’s orientation, shape,
and surface parameters. This method is shown to work well for relatively high
dimensions and non-Gaussian distributions of the light curve inversion problem.

INTRODUCTION

Space Situational Awareness (SSA) has many definitions depending on the goal at hand, but in

general it involves collecting and maintaining knowledge of all objects orbiting the Earth and the

space environment. This task is becoming more difficult as the number of objects currently tracked

by the U.S. Air Force increases due to breakup events and improving tracking capabilities.1 The

Space Surveillance Network (SSN) is tasked with maintaining information on over 22,000 objects,

1,100 of which are active, with a collection of optical and radar sensors. Determining physically

significant characteristics that go beyond simple orbital states is a key objective that is required

for protecting the space capabilities and achieving SSA. For example, the SSN catalog currently

includes radar cross-section and a non-conservative force parameter, analogous to a ballistic coeffi-

cient, which provide additional SO characterization information beyond position. The future SSA

system will have to be capable of building a much more detailed picture of SO characteristics.

Traditionally, optical tracking data is primarily used for orbit determination of deep space SOs

but optical measurements have been shown to provide information on space objects’ characteristics.

These measurements have been shown to be sensitive to shape,2, 3 attitude, angular velocity,2, 4, 5 and

surface parameters.6 These quantities are determined through processing light curve measurements

which are the time history of the observed brightness derived from non-resolved images of SOs. Al-

though resolved imaging of some classes of SOs is possible with powerful ground-based telescopes,

such as the Air Force Maui Optical and Supercomputing site Advanced Electro-Optical System, a

large class of objects is too small and/or too distant to be fully resolved. For example, most op-

erational SOs in geosynchronous orbits and “micro” and “nano” satellites are too small and/or too
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distant to be resolved. Extracting SO characteristics for non-resolved data involves solving a nonlin-

ear, weakly observable, and non-Gaussian inverse problem. However, solving this inverse problem

for SO characteristics from light curve data can provide improved information for a very critical

class of SOs. This work proposes a Bayesian approach for solving this inverse problem.

Light curve inversion has a rich history in the asteroid characterization community with a number

of successful software solutions.7, 8 These approaches used for asteroids are not easily transferrable

to satellites applications since these approaches make a number of assumptions that are not valid

for satellites. For example, the asteroids are assumed to reflect light in a purely Lambertian manner,

which is not a valid assumption for man-made SOs which exhibit considerably specular reflection.

Moreover, the rotational dynamics assumed for asteroid characterization approaches involve simple

axis spinning models, which are not valid for tumbling debris and controlled satellites. Furthermore,

asteroid inverse problems are solved in large batches where large data sets are considered with varied

viewing geometry, and frequently solutions are not possible because of lack of data. This may not be

possible under the limitations of the SSN since only a relatively small number of observations may

be available for each object. For SSA applications, light curve inversion approaches that can handle

short arcs of observation are appealing. This motivates developing Bayesian inversion approaches

for examining the light curve inversion problem for SSA applications.

A number of approaches have been developed for light curve inversion for artificial satellites.

Reference 9 uses light curves and thermal emissions to recover the three-dimensional shape of an

object assuming its orientation with respect to the observer is known. Reference 3 uses a linear

inversion model to solve for shape parameters from single-band light curve measurements. The

model uses a discretization of the normal vector space to solve for albedo variants in an analogous

manner to the asteroid characterization community.3 The attitude estimation problem has also been

studied assuming known shapes. Reference 10 uses an Unscented Kalman Filter approach to esti-

mate the attitude and angular velocity with a known shape. This built a foundation for Ref. 2 which

used a bank of models with assumed shapes to perform shape and attitude estimation. The approach

of Ref. 2 is effective since it marginalized out the nonlinear shape states and uses the weights of

the models to provide shape estimation. Then, Ref. 4 expands on these concepts and developed a

Particle Filtering approach for estimating attitude and angular velocities for highly maneuverable

objects while considering shape uncertainties. Finally, Ref. 5 uses a Marginalized Particle filter with

an exponentially correlated process noise model to estimate attitude with improved accuracy over

previous approaches at a reduced computational cost over the Particle Filtering approach used in

Ref. 4.

Although much progress has been made for the light curve inversion problem with a number of at-

titude estimation approaches and initial results toward full shape estimation, there is still no solution

for the simultaneous attitude, shape, and surface parameter inversion from light cure measurements

or the full inversion problem. The full inversion problem is difficult because shape inversion from

light curve measurements is an ill-posed problem, often having multiple solutions, large ambiguity,

and being non-Gaussian in nature. For example, objects with axis of symmetry clearly have attitude

ambiguity for the angle about the symmetry axis. Although some ambiguities can be accounted

for in a case-by-case basis, in general for the SO inversion problems there is typically no a priori

information to do this. Therefore, this work proposes a Bayesian inversion method for light curve

data processing. Bayesian inversion methods are capable of solving for the full probability density

function (pdf) which can fully resolve ambiguities in a non-Gaussian manner. This work also for-

mulates the light curve inversion problem in a way to makes it as flexible as possible and effective
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for man-made artificial satellites. This work uses a parameterization of light curve models and def-

inition of prior distributions to regularize these parameters that results in a flexible Bayesian light

curve inversion approach.

One of the most general and widely used approaches for Bayesian inversion are the Markov Chain

Monte Carlo (MCMC) algorithms. These algorithms produce samples from the posterior pdf using

relatively simple proposal and rejection rules. The first and very popular MCMC algorithm is the

Metropolis-Hastings (MH) algorithm11, 12 which has seen wide spread uses and has been applied to

solving complicated high-dimensional statistical problems. The basic process in the MH approach

starts with an initial parameter state, and uses a proposal distribution to generate proposal states, and

then applies an acceptance-rejection criterion such that steady-state distribute for the chain is the

target distribution. This process has a number parameters that require tuning; such as the proposal

distribution and the burn-in time (time that the chain is allowed to run to remove correlation with

initial starting point). Tuning these parameters is not trivial, and a number of adaptive approaches

have been developed to estimate these parameters and improve the overall accuracy and efficiency

of the MH approach.

Adaptive MCMC approaches deal with the tuning problem by automatically “learning” improved

parameters based on previous chain values.13 Some of these adaptive algorithms include Adaptive

Metropolis,14 Delayed Rejection (DR) method,15 and Adaptive DR.16 It has been shown that adap-

tive MCMC algorithms that adapt based on previous chain values will not always preserve the

stationary distribution.17 An efficient solution to the tuning problem is proposed with the Hamilto-

nian Monte Carlo (HMC),18 which uses Hamiltonian dynamics to improve mixing and the overall

efficiency. The HMC approach has been applied to a number of statistical applications due to a

number of its useful properties. The HMC simulates a Hamiltonian system based on the target den-

sity and an auxiliary momentum variable. The HMC reduces the random walk behavior of MH and

proposes samples that may be distant from the current state. This reduction of the random walk be-

havior makes HMC very appealing for high-dimensional applications. However, the HMC approach

still has a tuning parameter, mainly the mass matrix or the covariance of the momentum states. To

overcome this Ref. 19 proposes a new method, called Riemannian Manifold HMC (RMHMC), that

exploits the Riemannian geometry of the parameter space to improve the efficiency of the standard

HMC. The RMHMC uses the local Fisher Information Matrix (FIM) to define the mass matrix and

the scale for the momentum variable.

This work studies an Adaptive Hamiltonian Markov Chain Monte Carlo (AHMC) approach to

solve the light curve Bayesian shape inversion problem. The rotational, shape, and surface param-

eters of a SOs are estimated using the AHMC approach and the probability density functions for

these parameters are recovered. The organization of this paper is as follows. First a description

of the problem is given. Following this, Markov Chain Monte Carlo for Bayesian inversion is dis-

cussed. Then the Hamiltonian Markov Chain Monte Carlo (HMC) approach is outlined and a Fisher

information matrix adaptive HMC approach is given. Finally, a number of simulation test cases are

shown to highlight the ability of the Adaptive HMC (AHMC) to determine shape parameters and

recover non-Gaussian pdfs.

LIGHT CURVE INVERSION PROBLEM

Given light curve measurements, the goal is to estimate a dynamic state and model parameters of

Space Objects (SOs) from observations ỹk for k = 1, . . . ,m. The dynamic states and parameters are

represented by θ and the goal is to determine θ and its error distribution. From Figure 1, consider the
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Figure 1. Reflection Geometry

following measurement relation, assuming m scalar measurements with uncorrelated measurement

errors:

ỹi = f(uI
sun(ti),u

I
obs(ti), ti,θ) + vi, i = 1, . . . ,m (1)

where vi ∼ N (vi; 0, σ
2
mi

) and E {vivj} = σ2
mi

δij and N (ni; 0, σ
2
i ) is a normal distribution for

random variable ni with mean 0 and covariance σ2
i . The vectors uI

sun(ti) and uI
obs(ti) denote the

unit vector from the SO to the Sun and the unit vector from the SO to the observer, respectively, and

together they define the observation geometry (shown in Figure 1). The state and parameters may

have constraints, for example the dynamic of the SO can be viewed as a constraint on the evolution

of the state. These constraints can be written as

gk(θ) = 0, k = 1, . . . , ℓ (2)

In general, an optimal solution for the estimate of the state and model parameters is given by the

solution to the following problem:

minimize
θ

m
∑

i=1

1

2σ2
mi

∥

∥ỹi − f(uI
sun(ti),u

I
obs(ti), ti,θ)

∥

∥

2

2

subject to gk(θ) = 0, k = 1, . . . , ℓ.

(3)

The set of equations above are difficult to solve since for the light curve model f is in general

nonlinear and all the light curve models used are only approximations. Also, the state dynamic

model is not known exactly since external and or control torques are unknown. Finally, the shape

geometry is only an approximation since the number of parameters required to model any general

shape geometry render solutions of Eq. (8) intractable.

For illustrative purposes a simple light curve model can be analyzed assuming that the object

consists of a collection of N facets with only diffuse reflection and a non-Lambertian Bidirectional

Reflectance Distribution Functions (BRDF) model. The energy flux as seen by an observer can be

written as

f(θ, t) =

N
∑

i=1

Φsun,vis

πr2
αd(i)C

(

uI
sun(t)

TA(t)uB
n (i)

) (

uI
obs(t)

TA(t)uB
n (i)

)

(4)

where

C =
(

1−
(

1− uI
sun(t)

TA(t)uB
n (i)/2

)5
)(

1−
(

1− uI
obs(t)

TA(t)uB
n (i)/2

)5
)

(5)
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where Φsun,vis = 455 W/m2 is the solar power per unit area in the visible band and r denotes

the range between the SO and the observer. The matrix A(t) denotes the mapping from body

coordinates to inertial frame with kinematic relationship Ȧ(t) = [ω(t)×]A(t), and ω(t) is the

angular velocity of the SO. Since the SO is assumed to have unknown shape there is no preferred

body fixed frame that is known a priori and therefore, without loss of generality, it can be assumed

that A(t0) = I3×3 where t0 denotes the time of the first measurement. Here αd(i) and uB
n (i) denote

the diffuse albedo area product, αd(i) = s(i)F0(i)A(i) (Table 1 in the appendix), and the unit

normal for the ith facet, respectively. Note that since A(t0) = I3×3 is assumed the attitude state can

be neglected, and therefore the dynamic state of the SO only includes ω(t). A number of estimation

models exist for ω(t) but for this work it will be assumed that ω̇(t) = 0.

Then under the faceted model assumption and only considering diffusion reflection the albedo

normalized shape of the SO can be described by the collection of αd(i) and uB
n (i). The unit vector,

uB
n (i), can parameterized with two angles φi and gi. Then uB

n (i) is given by

uB
n (i) =









cos(φi)
√

1− g2i

sin(φi)
√

1− g2i
gi









(6)

Therefore using the measurement model described in Eq. (4) the parameter vector in Eq. (1) is given

by θ = [ω, αd(1), g1, φ1, · · · , αd(N), gN , φN ]T . The albedo area and normal vector

parameters are constrained, where 0 < αd(i), 0 < φi < 2π, and −1 < gi < 1. These constraints

can be incorporated into the prior distribution on the variables αd(i), φi, and gi. This work accounts

for the constraints on φi and g by defining a uniform prior distribution for these parameters given

by p(φi) = U [0, 2π] and p(gi) = U [0, 2π], respectively. It is also desired that the area estimates be

as small as possible, since SO areas are constrained by launch vehicle capability. An estimate that

favors smaller areas is preferred. Therefore, a lognormal distribution is used for the prior on αd(i)
given by

p(αd(i)) =
1

αd(i)σα
√
2π

exp

{

− (log(α)− µα)
2

2σ2
α

}

(7)

This prior behaves like a regularization term in that it will skew the posterior distribution towards

smaller areas and keep the area estimates well behaved. Finally, from Eq. (4) it can be seen that

not all facets contribute to a given observation. Mainly, for a facet to contribute to a observation

it must be both illuminated and visible to the observer, these two conditions are captured by the
(

uI
sun(t)

TA(t)uB
n (i)

)

and
(

uI
obs(t)

TA(t)uB
n (i)

)

terms, respectively. Then for a given measurement

vector, ỹ, there may be some locations φi, gi that are not illuminated and/or visible. Therefore the

Markov Chain Monte Carlo (MCMC) approach should not explore these parts of the state space,

and a illuminated and visible prior is used such that

p(φi, gi) = max

[

0, sign

{

m
∑

k

(

uI
sun(tk)

TA(tk)u
B
n (i)

) (

uI
obs(tk)

TA(tk)u
B
n (i)

)

}]

(8)

where this prior is zero if the facet location, (φi, gi), is never both illuminated and visible. The prior

on the angular velocity can be defined using some notional bounds on expected angular velocities for

both active and debris SOs. Then a Gaussian distribution can over-bound this expected maximum
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angular velocity. Here it is assumed that p(ω) = N (ω;0, σ2
ωI3×3). Finally, the full prior of the full

parameter vector is given by

p(θ) = p(ω)

N
∏

i

p(φi, gi)p(αd(i))p(gi)p(φi) (9)

The prior distribution does have some flexibility that can be used to control the robustness and

efficiency of the Bayesian Inversion method. Then measurement of the flux is corrupted with noise

and given by ỹi = f(ti) + vi where the measurement vector of times t1, t2, · · · , tm is given by

ỹ = [y1, y2, · · · , ym]T . Then assuming that the noise terms, vi, are independent, the likelihood

function for the measurement model is given by

p(ỹ|θ) = 1√
2πσm

exp

{

m
∑

i=1

−(ỹi − f(θ, ti))
2

2σ2
m

}

(10)

where the measurement variance, σm, is assumed to be the same for all observations.

MAKROV CHAIN MONTE CARLO FOR BAYESIAN INVERSION

In the Bayesian setting, the parameter vector denoted by θ is embedded with a prior distribution

p(θ). This prior is used to account for the constraints and other known properties of the parameters.

For inversion problems that are ill-posed the prior distribution can be used to regularize the param-

eter space by enforcing a certain structure. The observation vector is given a probabilistic model

based on the measurement noise statistics, where it is assumed that

ỹ ∼ p(·|θ) (11)

where p(·|θ) denotes the likelihood distribution. Then Bayesian inference is based on the posterior

distribution, p(θ|ỹ). Bayes’ Theorem relates the prior and likelihood distribution to the posterior

distribution:

p(θ|ỹ) = p(ỹ|θ)p(θ)
∫

p(y|s)p(s)ds (12)

where the denominator is a normalization constant to make p(θ|ỹ) a proper pdf and in most cases is

not tractable. The normalizing constant makes computation of the posterior distribution especially

difficult for multidimensional problems. The Markov Chain Monte Carlo (MCMC) approach pro-

vides a simple method for simulating values from a distribution that can be calculated only up to a

normalizing constant.

Therefore, the issue with the normalizing constant is overcome by MCMC based method which

rather than forming p(θ|ỹ) produces a Markov Chain {θ1,θ2, · · · ,θN} which is a sampling from

p(θ|ỹ). This chain can be used to estimate moments and statistics of posterior distribution thereby

allowing for the recovery of an estimate of the full posterior distribution. The Markov chains are

generated using information from an unnormalized posterior distribution by using

π(θ|ỹ) ∝ p(ỹ|θ)p(θ) (13)

where here π(θ|ỹ) denotes the target distribution. MCMC simulation produces a sequence of values

that follow a stochastic process called a Markov chain. Then a Markov chain is denoted by a

sequence of parameter vectors θ
1,θ2, · · · ,θN . The algorithm used in the simulation ensures that
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the chain will take values in the domain of the unknown θ and that its limiting distribution (as

N → ∞) will be the target distribution π(θ).

The Metropolis-Hastings (MH) algorithm is currently the most general algorithm for MCMC sim-

ulation. The MH proposes moves in the parameter space and accepts or rejects the moves based on

the ratio of π(θ)/π(θ∗) where θ and θ
∗ are the current and proposed parameter vector, respectively.

By calculating this ratio the integral constant in the Bayes formula cancels out. Metropolis-Hastings

algorithm has a transition pdf according to

p(θ,θ∗) = q(θ,θ∗)α(θ,θ∗), θ 6= θ
∗ (14a)

p(θ,θ) = 1−
∫

q(θ,θ∗)α(θ,θ∗)dθ (14b)

where q(θ,θ∗) is the proposal density, α(θ,θ∗) is the acceptance probability, p(θ,θ∗) is the prob-

ability of moving to θ
∗ from θ, and p(θ,θ) is the probability of staying at θ. The density q(θ, ·),

with θ being the current location of the chain, is the proposal density and used to generate random

proposal states. MCMC algorithms have to satisfy the reversibility condition which is a sufficient

condition for the density π(θ) to be the stationary distribution of the chain. The reversibility condi-

tion is stated as

π(θ∗)q(θ,θ∗)α(θ,θ∗) = π(θ)q(θ∗,θ)α(θ,θ) (15)

The stationary distribution implies

∫

π(θ)p(θ,θ∗)dθ = θ
∗ (16)

This leads to the choice of the Metropolis-Hastings acceptance probability α as

α(θ,θ∗) = max

[

1,
π(θ∗)q(θ∗,θ)

π(θ)q(θ,θ∗)

]

(17)

Then once a proposal distribution, q(θ,θ∗), and desired length of chain is selected the MH-MCMC

algorithm is given by

1. Choose an initial value θ0

2. At each step where the current value is θi−1, propose a candidate for the new parameter θ∗

from the distribution q(θi−1, ·)

3. If the proposed value θ∗ has a high target density value than θ
i−1 or

π(θ∗)q(θ∗,θ) > π(θ)q(θ,θ∗)

the proposal is accepted unconditionally.

4. If this is not the case, then θ∗ is accepted as the new value with a probability α given by

Eq. (22).

5. If θ∗ is not accepted, then the chain remains at the current value and θi = θi−1

6. Repeat the simulation from step 2 until the desired length of chain is reached

7



HAMILTONIAN MARKOV CHAIN MONTE CARLO

The Hamiltonian or Hybrid Monte Carlo (HMC) method provides a more efficient mixing and

burn-in as compared to a traditional Metropolis algorithm by avoiding the random walk behavior

and proposing samples with close to one acceptance probability. The proposal system uses a Hamil-

tonian system, H(θ,p), that includes the parameter vector θ and an auxiliary momentum variable

p. Then proposals are generated by simulating the Hamiltonian dynamics of H(θ,p) for some

fictitious time. The Hamiltonian is then defined by a potential and kinetic energy function

H(θ,p) = V (θ) + T (θ,p) (18)

where the potential energy, V (θ), is taken to be the negative log of the target density, V (θ) =
− log(π(ỹ|θ)). Choosing the potential as − log(π(ỹ|θ)) will drive the Hamiltonian towards a high

probability state by providing a gradient decent term. A clear analogy between the Hamiltonian,

H(θ,p), and the joint distribution p(θ,p) is given by p(θ,p) ∝ exp(−H(θ,p)). Then the mo-

mentum state distribution is related to T (θ,p). Since the auxiliary momentum variable is not in-

cluded in the parameter vector, a random momentum vector is generated before each proposal and

before simulating the Hamiltonian system. For example it can be assumed that the kinetic energy

does not depend on θ and has the form

T (p) =
1

2
pTM−1p (19)

Then the initial momentum is randomly sampled from p(p) ∝ exp(−T (p)) or p ∼ N (0,M).
Then the Hamiltonian is given by

H(θ,p) = V (θ) +
1

2
pTM−1p (20)

The trajectories that follow the Hamiltonian dynamics are given by

θ̇ =
∂H

∂p
= M−1p (21a)

ṗ = −∂H

∂θ
= −∇θV (θ) (21b)

The solution flow for the differential equations above, (θ(τ),p(τ)) = ϕ(θ(0),p(0)), preserve the

total energy i.e. H(θ(τ),p(τ)) = H(θ(0),p(0)) and hence the joint density p(θ(τ),p(τ)) =
p(θ(0),p(0)). They also preserve the volume element dθ(τ)dp(τ) = dθ(0), dp(0), and are time

reversible. To generate a proposal state Eq. (21) must be numerically solved for some integration

time t. The integration time is arbitrary and chosen such that the Hamiltonian dynamics is allowed to

evolve into a higher probability state. The joint probability of the new state is given by p(θ∗,p∗) ∝
exp(−H(θ∗,p∗)), then the acceptance probability α is given by

α(θ,θ∗) = max [1, exp {−H(θ∗,p∗) +H(θ,p)}] (22)

Since the Hamiltonian is preserved H(θ∗,p∗) = H(θ,p), at least approximately, and therefore

proposals generated with the HMC have nearly 1 acceptance probability. This property makes the

HMC approach very efficient. There are a class of numerical integrators for Hamiltonian systems

which preserve energy, volume, and are time reversible. The Stormer-Verlet or Leapfrog methods
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are from this class. The Leapfrog method will be used for this work, and Eq. (21) can be evolved

forward by ǫ with the following:

p(τ + ǫ/2) = p(τ)− ǫ∇θV (θ(τ))/2 (23a)

θ(τ + ǫ) = θ(τ) + ǫM−1p(τ + ǫ/2) (23b)

p(τ + ǫ) = p(τ + ǫ/2) − ǫ∇θV (θ(τ + ǫ))/2 (23c)

The equations above only approximately conserve the total energy introducing errors due to the

numerical approximation which creates a bias in the joint density, p(θ,p). This bias is corrected by

the the accept-reject step used in MCMC approaches. Therefore if the numerical bias introduced

causes the trajectory to head to a decreased probability state it will likely be rejected, but if the

trajectory creates an increase in probability it will be accepted with probability 1. If the integration

error in the total energy is small then the acceptance probability will remain at a high level. In

general, since the acceptance probability for HMC is nearly one, its sampling from the invariant

density p(θ|y) can be considered as a Gibbs sampler where the momentum p acts simply as an

auxiliary variable. Equations (23a) and (23b) can be written as

θ(τ + ǫ) = θ(τ)− ǫ2

2
M−1∇θV (θ(τ)) + ǫM−1p(τ) (24)

which can be viewed as a pre-conditioned Langevin diffusion or gradient decent. It is clear that the

mass matrix M is critical for the performance of the HMC. The tuning of the mass matrix M may

be difficult without knowledge of the target density.

ADAPTATION IN HAMILTONIAN MARKOV CHAIN MONTE CARLO

The Riemann Manifold Hamiltonian Monte Carlo (RMHC) overcomes the difficulty of tuning the

mass matrix by using the local structure of the target density when proposing. The RMHC method

choses the mass matrix to be Fisher Information Matrix (FIM) of the joint posterior, p(θ,p|ỹ).
Therefore the mass matrix is state dependent and given by M(θ) = F where F is the FIM given by

F (θ) = E

{

[

∂

∂θ
log(p(θ|ỹ))

]T [ ∂

∂θ
log(p(θ|ỹ))

]

}

(25)

Then the mass matrix becomes state dependent and the Hamiltonian system is no longer separable

and the Leapfrog method is not applicable. Instead, a generalized Leapfrog algorithm is used to

simulate non-separable dynamics generated with the FIM mass matrix. The Hamiltonian for the

RMHC approach is then given by

H(θ,p) = V (θ) +
1

2
log det (F (θ)) +

1

2
pTF (θ)−1p (26)

To solve for the HMC on the Riemmanian manifold defined by the geometry of the parameter space

the system in Eq. (27) must be solved. But this can be challenging since the system is non-separable

and Hamilton’s equations will require gradients of F (θ). Therefore, the Adaptive HMC (AHMC)

approach is used here which holds F (θ) while the simulation of the Hamiltonian for generation

of proposal states. Although F (θ) is not allowed to vary during solving Hamilton’s equation, it is

updated for each new proposal step. In effect, this uses the Riemmanian manifold geometry but

doesn’t require the generalized Leapfrog or further derivatives of − log(p(θ|ỹ)). Then the mass
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matrix is set to M = F (θi−1) for the i − 1 proposal step and Eq. (23) is used to simulate the

Hamiltonian dynamics for the following Hamiltonian:

H(θ,p) = V (θ) +
1

2
pTF (θi−1)

−1p (27)

Note that the term 1
2 log det (F (θ)) is no longer required since the mass matrix is held constant for

the proposal step. Additionally, the partial derivatives from Eq. (28) and FIM for attitude states

are calculated for the Ashikhmin-Shirley20 light curve model in Ref. 21. Although Ref. 21 only

considers the attitude when calculating the partial derivatives a similar procedure can be applied for

the state vector considered in this work. For the model given by Eqs. (4) and (5), and the likelihood

function given by Eqs. (10), the FIM can be calculated by

F (θ) =
1

σ2
m

m
∑

i=1

[

∂

∂θ
f(θ, ti)

]T [ ∂

∂θ
f(θ, ti)

]

(28)

where the form of the FIM will depend on the contents of the state vector, θ, and the light curve

model used.

MODEL SELECTION AND SPARSE SOLUTIONS

The light curve models discussed earlier require the specification of the number of facet normals,

N , to define the shape and surface property parameter vector. For a given N the HMC approach

can be used to sample for the target density describing the a posteriori on the state vector θ. For

most cases the true number of facets is not known and therefore this becomes a free parameter in

the inversion process. This parameter in effect defines the model to be used, and dimension of

the problem increases linearly with N . The dimensionally of the light curve inversion problem

is given by d = nspN where nsp is the number of parameters for each facet. The selection of

the number of facet normals may be a difficult problem since it is desirable to use a model with

minimum complexity but a model that can approximate the data well. It is expected that man-made

space objects should be well approximated by flat facets. Therefore a relatively low number of

facet normals should represent the data well. It is well known that the inversion problem can be

regularized using the L1-norm to produce sparse solutions. Consider the unconstrained version of

the inverse problem described by Eq. (8), a regularization term can be added to this minimization

problem to promote sparse solutions. Then the L1-norm regularized version of the inverse problem

described by Eq. (8) is given by

minimize
θ

m
∑

i=1

{

1

2σ2
mi

∥

∥ỹi − f(uI
sun(ti),u

I
obs(ti), ti,θ)

∥

∥

2

2
+

‖αd‖21
2λ2

}

(29)

where αd = [αd(1), · · · , αd(N)]T and ‖a‖1 denotes the L1-norm of the vector a. The parameter

λ controls the weighting between reducing the measurement residual error and enforcing that αd

is sparse. This parameter can introduce a bias in the estimated parameter but can also reduce the

variance of the estimation error. In fact, the bias increases with increasing λ while the variance

of the estimation error decreases with increasing λ. For linear inverse problems the minimization

problem given in Eq. (29) can be solved using the LASSO method.22 The LASSO method provides

a solution for parameter vector θ as a function of λ. This L1-norm regularization can be imposed in

a Bayesian framework by considering an L1-norm prior on the area states. Then an alternative prior

10



can be imposed on the vector albedo areas to promote sparse solutions. To promote sparsity in the

solution an L1-norm prior is used23 as an alternative to Eq. (8). The L1 norm prior is then given by

p(α) ∝ exp

{

−‖αd‖21
λ2

}

(30)

Then the Bayesian version of Eq. (29) can be written in terms of the L1-norm prior:

p(θ|ỹ) ∝ exp

{

−‖ỹi − f(θ, ti)‖22
2σ2

mi

}

exp

{

−‖αd‖21
2λ2

} N
∏

i

p(φi, gi)p(αd(i))p(gi)p(φi)

Samples from p(θ|ỹ) are then generated using the HMC approach for a given value of λ. Note

that λ is a user defined parameter and for each given problem there is a tradeoff between biases

and variance reduction when selecting λ. For this work the L1-norm prior is used from model

selection, not determining the final Bayesian inversion state estimate. During the burn-in phase of

the HMC, sampling is used for a given value of λ to find a sparse model representation. The chain

generated using Eq. (30) will drive as many albedo area values to zero as possible while adjusting

the remaining albedo areas to fit the data. Since the samples generated from Eq. (30) are biases due

to λ the are only used to burn-in and find a reduced model representation and a reasonable estimate

of the location of the steady state distribution. Then the final sample from this burn-in phase is used

to estimate the number facets to be used in the full HMC run. The number of facets with albedo areas

above a threshold will then be considered as an estimate of the number of facets needed. Then given

these estimates this reduced vector is used as the starting location for another HMC run to produce

a sample from the target density. The process begins with running the HMC with initial value of Ni

which is selected as a upper bound on the true number of facets, such that Ni > Nt where Nt is

the true number of facets. Then the final location of the chain from the L1-norm regularized target

density given in Eq. (30) is used to estimate N as the number of albedo areas which are higher than

some lower bound, αL
d . Then using the prior in Eq. (8) a chain is generated which should have a

reduced bias and a good estimate of the number of facets.

SIMULATION RESULTS

Three simulation test cases are considered to analyze the performance of the AHMC approach.

First the target distribution is studied for a single facet model using a non-Lambertian diffuse BRDF

shown in Table 1. Then the HMC approach is applied to approximating a draw from the target dis-

tribution for the single facet model. The pdf for the chain is calculated along with the predicted

measurement output. Next, the multiple facet case is considered with a six facet truth model and the

HMC approach correctly assumes a state vector with six facets. Again the non-Lambertian diffuse

BRDF model is used for this case. All cases use a simple measurement geometry for illustrative

purposes, where the illumination and observer geometry used to generate measurements are sim-

plified. These examples consist of relatively simple measurement geometry where the observer and

Sun directions are defined as

uI
obs(ti) = [cos(ωobsti + λobs), sin(ωobsti + λobs), 0]T

uI
sun(ti) = [cos(ωsunti + λsun), sin(ωsunti + λsun), 0]T

(31)

where ti is a time parameter, and ωobs and ωsun are the angular velocity of the Sun and observer

directions, respectively. In general, these directions can be defined in a realistic manner by simu-

lating the SO orbit and determining the directions to a ground site and the Sun given the SO orbital

11
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Figure 2. Contour of log (log π(ỹ|θ))

position. Since it is desired to study the Bayesian light curve inversion problem, it is beneficial to

forgo a complete orbital simulation for the model shown in Eq. (31). Then by defining ωobs, ωsun,

λobs, and λsun the simulation geometry can be completely specified.
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Figure 4. Predicted Measurements

Single Non-Lambertian Diffuse Facet Target Density

In this section the target density for a single facet model is analyzed. Flux measurements are

generated for a single facet model using the non-Lambertian diffuse model given in Table 1. The

measurement likelihood and prior pdf given by Eqs. (10) and (9) are used to calculate the target

distribution given by Eq. (13). The single facet model with non-Lambertian diffuse BRDF consists

of a parameter vector given by θ = [αr, θ, g]T . Then two measurement geometries are consid-

ered, one with a single passes direction using Eq. (31) and one case with two pass with orthogonal

trajectories (uI
obs(ti) on the second pass is not on the y-z plane). Then the target density is evalu-

ated at different points in the parameter space and shown in Figure 2. Figures 2(a) and 2(b) show

the loglog of target density for a single pass. Figure 2(b) show the target density in the θ-g space.

From this figure it can be seen that the location of the facet is weakly observable in the direction

perpendicular to the pass. The location has high variation in the g direction and smaller variation

is the θ direction. Figure 2(a) shows the target density in the θ-a space. Here it can be seen the

target density is highly non-Gaussian. From this figure it is clear that for a true location of g = 0,

the measurement can be reproduced by high value of g with a larger area. Increasing g results in a

larger angle between the observer and the normal but by increasing the area the effect of increasing

this angle can be negated. Figures 2(c) and 2(d) show the target density plots for two passes. In this

case the observer direction is simulated using Eq. (31) with motion in the x-y plane and also with

motion in the y-z plane. The multiple passes reduce the uncertainty in the g direction as seen by

Figure 2(d) and the area is also further contained as seen by Figure 2(c).

AHMC Single Facet

The AHMC approach is applied to the single facet inversion problem. In this case one single

measurement pass is considered using Eq. (31). The AHMC approach is used to generate proposal

states and the MH-MCMC acceptance condition is used to accept or reject the proposal. The initial

chain location is sampled from the prior density given by Eq. (9). The chain is allowed to burn in

for 1000 samples so that the memory of the starting location is removed. Figure 3 shows the result

of the single facet AHMC runs. The pdf for the chain is estimated using the sample and shown in

Figures 3(c) and 3(d). The AHMC samples are shown in Figures 3(a) and 3(b). From these figures

it can be seen that the samples have the shape of the target density that has been seen in Figure 2.
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Figure 6. Empirical Probability Density Function for Multiple Facet Model

The pdf is estimated from the sample using a histogram, and estimated pdf is shown in Figures 3(b)

and 3(a). From this figure it is seen that the single facet model is non-Gaussian and the AHMC

chain closely approximates the target density as seen by Figure 2.

AHMC Multiple Facet

For this case the multiple facet model is considered, where the measurement is simulated for a six

facet model with truth values given by αd = [10, 10, 10, 10, 10, 10]T , θ = [0, 0, π/2, π, 3π/2, 2π],
and g = [1,−1, 0, 0, 0, 0]. The measurement uncertainty used is given by σm = 0.1, flux measure-

ments are generated using the single pass defined by Eq. (31). Again the initial chain location is

randomly sampled from the prior density and the chain is allowed to burn-in for 1000 samples. The

burn-in phase uses the sparse prior discussed early with a fairly large sparsity promoting parameter
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Figure 7. Predicted Measurements for Multiple Facet Example

where λ = 1000. The value of λ is determined from experimentation. For this value it is found that

the AHMC approach correctly determines the true number of facets during burn-in. In practice the

true number of facets is not known and an alternative approach could involve running the burn-in a

number of times on the real data until an acceptable measurement residual is achieved while pro-

moting sparsity. After the burn-in phase the final state of the burn-in are fed into another run of the

AHMC to produce samples from the target density. The burn-in phase is shown in Figure 5. The

AHMC chain versus the number of samples is shown in Figure 5(a). This figure shows the initial

burn-in converging to the target density. It can be seen that some of the albedo area converge to zero

while others do not. The burn-in of the facet locations is shown in Figure 5(b) where normal vector

directions are adjusted to fit the data with a sparse model. The final locations of the normal vector

during burn in are close to the true locations as seen by Figure 5(a). Figure shows the empirical pdf

for the multiple facet inversion problem. From this figure it can be seen that the AHMC approach

can recover the non-Gaussian pdf for all of the SO shape states. The relative high dimensionality of

the state space is handled well by the AHMC and the approach shows efficient mixing in that a low

number of samples is required to provide good estimates of the target density. Finally, from Figure

it can be seen that the chain provides a good prediction of the measurements with non-Gaussian

error estimates.

Geosynchronous Satellite Glint Example

This example considers light curve measurements from a Geosynchronous (GEO) satellite with

stabilizing attitude control. GEO satellite glints are a well known light curve attribute which are

observed for GEO satellites with Sun tracking solar panels.24 GEO satellites with Sun tracking

solar panels will have predictable glint when the observer directions aligns with the Sun direction,

and large solar plans reflect in a mostly specular manner. Since modeling of this specular reflection

is important for the GEO case the Ashikhmin-Shirley is used for both simulating the observations

and as the model used in the Bayesian inversion. The Ashikhmin-Shirley model has the following

parameter vector for each facet θ = [ω, A(i), θ, g, ρ, n, d]T . Reference 25 uses this

model to estimate the rotational and surface parameter states ρ, n, and d. This example is the first

time that the full shape is recoverable using the Ashikhmin-Shirley in a full Bayesian setting. The

observation for this example along with the predicted observation and uncertainty are shown in

Figure . The AHMC is again burned in for 1000 samples with a 10 facet model, and the sparse state
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Figure 8. Geosynchronous Satellite Glint Example

vector determined from burn in had 3 facets. Form Figure it can been seen that the Ashikhmin-

Shirley has a strong specular reflection component. The AHMC is able to recover this specular

compute and approximate the shape of the measured light curve with good performance.

CONCLUSION

This work studied the space object shape and parameter inversion problem using light curve mea-

surements. This work employs an Adaptive Hamiltonian Makrov Chain Monte Carlo (AH-MCMC)

or AHMC estimation approach to produce samples from the posterior probability distribution of

the shape and parameter states. The target density was studied, and it was shown that for a single

facet shape model the location of the facet is weakly unobservable in the direction orthogonal to

the path of the observer unit vector. Also the area state has a non-Gaussian pdf, making this state

weakly unobservable, but with the addition of a second pass both the area and location of the facet

become more observable. The multiple facet estimation problem was also studied, where the di-

mension of the state is 30 during burn-in. Using an L1-norm prior during burn-in, a sparse shape

model was recovered that represented the data well and reduced the number of states to 18. The

AHMC performances well in the high-dimensional state-space. The pdf for the large dimensional

state-space was generated and the measurement were predicted with reasonable accuracy. Finally,

the AHMC approach was shown to be able to solve the Bayesian inversion problem using light

curve measurements.
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Table 1. Review of Bidirectional Distribution Functions

Lambertian Rd = ρd
π

Rs = 0

non-Lambertian diffuse Rs = 0

Rd = F0

(

1−
(

1− uI
n
T
(i)uI

sun/2
)5
)(

1−
(

1− uI
n
T
(i)uI

obs/2
)5
)

Ashikhmin-Shirley F = F0 +
(

1
s − F0

)

(1− c)5

Rd = 28ρ
23π (1− sF0)

(

1−
(

1− u
I
n
T
(i)uI

sun

2

)5
)(

1−
(

1− u
I
n
T
(i)uI

obs

2

)5
)

Rs =

√
(nu+1)(nv+1)

8π
F

cmax[uI
n
T (i)uI

sun,u
I
n(i)u

I
obs]

(cos (α))nu cos2(β)+nv sin2(β)

Cook-Torrance Rd = ρ/π

D = 1
πm2 cos4 αe

tan(α)/m2

G = min

{

1,
2
(

u
I
n
T
(i)uI

h

)(

u
I
n
T
(i)uI

obs

)

u
I
obs

T
u
I
h

,
2
(

u
I
n
T
(i)uI

sun
T
)(

u
I
n
T
(i)uI

h

)

u
I
obs

T
u
I
h

}

F = (g−c)2

2(g+c)2

{

1 + [c(g+c)−1]2

[c(g−c)+1]2

}

Rs =
DGF

4(uI
n
T (i)uI

sun)(uI
n
T (i)uI

obs)

Blinn-Phong Rd = ρd
π

Rs = (1− d)
(

F0(n+2)(n+4)

8π(n+2−n/2)

)(

uI
n
T
(i)uI

h

)

APPENDIX

Partial Derivative non-Lambertian Diffuse

The partial derivatives of the simplified measurement function are calculated as

∂

∂αd(i)
f(θ, ti) =

zq

π
C (32a)

∂

∂φi
f(θ, ti) = C1u

I
obs(t)

[

∂

∂φi
uB
n (i)

]

+ C2u
I
sun(t)

[

∂

∂φi
uB
n (i)

]

(32b)

∂

∂gi
f(θ, ti) = C1u

I
obs(t)

[

∂

∂gi
uB
n (i)

]

+ C2u
I
sun(t)

[

∂

∂gi
uB
n (i)

]

(32c)

C1 =
αd(i)

π

[

5

2
zq
(

1− (1− z/2)4
)(

1− (1− q/2)5
)

+ Cq

]

(32d)

C2 =
αd(i)

π

[

5

2
zq
(

1− (1− z/2)5
)(

1− (1− q/2)4
)

+ Cz

]

(32e)

[

∂

∂φi
uB
n (i)

]

=

[

−gi sin(φi)
√

1− g2i , cos(φi)
√

1− g2i , 0

]T

(32f)

[

∂

∂gi
uB
n (i)

]

=
[

−gi cos(φi)
(

1− g2i
)−1/2

, −gi sin(φi)
(

1− g2i
)−1/2

, 1
]T

(32g)
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where z and q are given by q =
(

uI
sun(t)

TA(t)uB
n (i)

)

and z =
(

uI
obs(t)

TA(t)uB
n (i)

)

, respectively.

Review of Bidirectional Distribution Functions

A number of bidirectional reflectance distribution functions (BRDFs) exist in the literature. These

models are based on the BRDF that models light distribution scattered from the surface due to the

incident light. The BRDF at any point on the surface is a function of two directions, the direction

from which the light source originates and the direction from which the scattered light leaves the

observed the surface. These models include Ashikhmin-Shirley,20 a simplified Blinn-Phong,26 and

Cook-Torrance27 to list some. The BRDF models how light energy reflects off of surfaces and how

this reflected energy is distributed in various directions. The brightness of an object in space can be

modeled using an anisotropic Phong light diffusion model.20

The model in Ref. 20 decomposes the BRDF into a specular component and a diffuse component.

The two terms sum to give the total BRDF:

ρtotal(i) = ρspec(i) + ρdiff(i) (33)

The diffuse component represents light that is scattered equally in all directions (Lambertian) and

the specular component represents light that is concentrated about some direction (mirror-like).

Reference 20 develops a model for continuous arbitrary surfaces but simplifies for flat surfaces.

This simplified model is employed in this work as shape models are considered to consist of a finite

number of flat facets. Therefore the total observed brightness of an object becomes the sum of the

contribution from each facet:

fr = (dRd + sRs) (34)

which depends on the diffuse bidirectional reflectance (Rd), the specular bidirectional reflectance

(Rs) ,and the fraction of each to the total (d and s respectively where d+s = 1). These bidirectional

reflectances are calculated differently for the various models. In each model, however, c = uI
obs

T
uI
h,

ρ is the diffuse reflectance (0 ≤ ρ ≤ 1), and F0 is the specular reflectance of the surface at normal

incidence (0 ≤ F0 ≤ 1). To be used as a prediction tool for brightness and radiation pressure

calculations, an important aspect of the BRDF is energy conservation. For energy to be conserved,

the integral of the BRDF times cos (θr) over all solid angles in the hemisphere with θr ≤ 90 needs

to be less than unity, with

∫ 2π

0

∫ π/2

0
fr cos (θr) sin (θr) dθrdφ = Rd +Rs (35)

For the BRDF given in Eq. (34), this corresponds to constant values of Rd = dρ and Rs = sF0.

The remaining energy not reflected by the surface is either transmitted or absorbed. In this paper it

is assumed that the transmitted energy is zero. A review of the various BRDS functions is provided

in Table 1.

Ashikhmin-Shirley BRDF: In addition to d, ρ, and F0, the Ashikhmin-Shirley BRDF has two

exponential factors (nu, nv) that define the reflectance properties of each surface. The Ashikhmin-

Shirley diffuse and specular reflectivities are not constant, however, but rather complicated functions

of illumination angle, exponential factor, and the diffuse and specular reflectances. In all cases,

however, Rd +Rs ≤ 1, so energy is conserved.

Blinn-Phong: The specular bidirectional reflectance of the original Phong model is proportional

to
(

uI
n
T
(i)R

)n
, where R is the perfect mirror-like reflection of uI

sun
T

. Blinn26 proposes that uI
h be
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used instead of R to make it easier and faster to calculate. Unfortunately, both versions of the model

do not conserve energy and thus are unsuited for the purposes of brightness estimation. The model

can be made to conserve energy, however, by modifying the leading term. In keeping with the desire

for simplicity in this model, the leading term is chosen to only be a function of the exponential factor

and set to yield a reflectivity equal to the mirror-like reflection of Eq. (3) at normal illumination. In

addition to d, ρ and F0, the simplified Blinn-Phong BRDF has a single exponential factor (n) that

defines the reflectance properties of each surface.

Cook-Torrance BRDF: This model has the facet slope distribution function (D), the geometrical

attenuation factor (G) and the reflectance of a perfectly smooth surface (F ) with g = n2 + c2 − 1

and the index of refraction n = 1+
√
F0

1−
√
F0

. In addition to d, ρ, and F0, the Cook-Torrance BRDF has

a facet slope (m) parameter that defines the reflectance properties of each surface. The facet slope

parameter of the Cook-Torrance BRDF and the exponential factor of the Ashikhmin-Shirley and

Blinn-Phong BRDFs are roughly related by n = 2/m2.
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