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CHOOSING FILTER STATES AND MODELS FOR SMALL
SATELLITE ATTITUDE DETERMINATION

Andrew D. Dianetti∗ and John L. Crassidis†

The availability of low-cost attitude sensors, including gyroscopes, has enabled precision
attitude determination and control in small satellites. Kalman filtering is one of the most
popular methods for such determination. Historically, dynamic model replacement has been
used for angular rate estimates, where only the gyro bias is estimated, and the angular rate
estimate is obtained by subtracting it from the gyro reading. However, the comparatively high
noise in sensors used in small satellites results in reduced performance when this formulation
is used. Estimating angular rate in the filter allows for better angular rate estimates, but
disturbance torques can no longer be ignored in the model. This work presents filters for both
the case of dynamic model replacement and estimating the angular rate, and simulations are
presented for several use cases. It is found that for the typical sensor noise parameters present
in small satellites, estimating angular rate in the filter results in better estimates, especially
of the angular rate state.

INTRODUCTION

Kalman filtering is one of the most popular methods for spacecraft attitude determination. The Extended
Kalman Filter (EKF) has historically been one of the most commonly used methods. Other recursive methods,
such as the Unscented Filter and Filter QUEST, are also used.1 Low-cost Microelectromecchanical Systems
(MEMS) sensors, such as magnetometers and gyroscopes, have enabled precision attitude determination in
small satellites. However, these sensors have high noise parameters in comparison to sensors traditionally
used on spacecraft.

Traditional implementation of the recursive methods in large satellites has used dynamic model replace-
ment, in which the estimated states consist of the attitude and gyroscope bias. Since random noise in con-
ventional gyros is low, subtracting the estimated bias from the gyro reading produces an accurate measure
of the true angular rate, and this can be fed directly into the filter. Such a method eliminates the need for
knowledge of the physical model, including the inertia matrix and commanded torques, and also captures
disturbance torques. Many proposed and implemented small satellite attitude determination and control sys-
tems using gyroscopes also employ this method.2–5 However, MEMS gyroscopes have noise that is several
orders of magnitude higher than conventional or ring laser gyroscopes. In order to use the dynamic replace-
ment model, this noise must be accounted for in the process noise covariance, which leads to an increased
uncertainty in the state estimate. Since the angular rate estimate is determined directly from the gyroscope
measurements, the angular rate estimate becomes particularly noisy. Using a full-state estimator that esti-
mates attitude, rate, and gyro bias can result in greater accuracy by removing this source of process noise.
This is especially true if a star tracker or other high-accuracy attitude sensor is used, as the angular rate esti-
mates will also be updated from information contributed by this sensor. However, this formulation requires
knowledge of the attitude dynamics, and requires treatment of unknown disturbance torques as process noise.
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This paper will present formulations of the Multiplicative EKF and Unscented Filter using both dynamic
model replacement and a full-state estimator. Simulations will be presented for different classes of sensor
accuracy, and the respective performance of each filter will be discussed.

ATTITUDE DYNAMICS AND REPRESENTATIONS

Quaternion Kinematics

Although a spacecraft’s attitude is described by three degrees of freedom, there exist no nonsingular three
parameter representations. The quaternion, a four-parameter realization, is one of the most commonly used
representations in attitude determination. It is composed of a 3× 1 vector % and a scalar q4:

q =
[
%T q4

]T
(1)

The quaternion is subject to the constraint ||q|| = 1. Unless otherwise noted, the quaternion describes the
rotation from the inertial frame to the spacecraft body frame.

The spacecraft’s angular rate, measured with respect to an inertial frame but written in body-frame coordi-
nates, is denoted ω, a 3× 1 vector. Then, the quaternion kinematics are given by6

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q (2)

where

Ξ(q) =

[
q4I3×3 + [%×]

−%T
]

(3a)

Ω(ω) =

[
−[ω×] ω

−ωT 0

]
(3b)

where I3×3 is the 3× 3 identity matrix and [ω×] denotes the skew-symmetric cross product matrix of ω.

Kalman Filter Attitude State Formulations

Due to the unit norm constraint, the quaternion cannot be used directly in the Kalman filter, as the con-
straint may be violated. A common approach to using the quaternion in the Extended Kalman Filter and
Multiplicative Extended Kalman Filter (MEKF), which maintains the unit norm to first order. Derivations of
the and MEKF are widely available.1, 7 The MEKF is widely used due to its simplicity. In the MEKF, the
true attitude is written as a product of the estimated attitude and a deviation from the estimate. If the error
quaternion is defined as δq, then the true quaternion is written as

q = δq ⊗ q̂ (4)

Note that quaternion multiplication ⊗ is defined using the Shuster convention, where quaternions are com-
posed in the same order as attitude matrices.8 Here, the error quaternion δq is the deviation from the estimate.
It can be written as

δq =
[
δ%T δq4

]T
(5)

The attitude states used in the filter are δ%, and the scalar part of the error quaternion is computed as

δq4 =
√

1− ||δ%|| (6)

In the MEKF, the estimated attitude states are δ%. At each time step k, the error quaternion δq is initialized
as identity:

δq−k =
[
0 0 0 1

]T
(7)

Then, the Kalman update is performed on δ% and the updated error quaternion is written as

δq+
k =

[
(δ%+

k )T δq+
4,k

]T
(8)
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where δq+
4,k is computed using Eq. (6). Then, the updated quaternion estimate at each time step is given by

applying Eq. (4)
q̂+
k = δq+

k ⊗ q̂
−
k (9)

Alternatively, if δ% is small, then a first-order approximation can be made:6

q̂+
k ≈

(
Iq +

[
δ%+

k

0

])
⊗ q̂−k = q̂−k + δ%+

k ⊗ q̂
−
k = q̂−k + Ξ(q̂)δ% (10)

where Iq is the identity quaternion. In this approach, the quaternion must be re-normalized after every update
step. With the attitude parameterizations of the MEKF now defined, forms of the MEKF will be presented
for both the cases of dynamic model replacement and a full-state filter including angular rate.

DYNAMIC MODEL REPLACEMENT FILTERS

In the dynamic model replacement formulation, a sensor must be available that measures the angular rate.
If only attitude, not rate, sensors are available, the angular rate must be estimated. A common noise model
for the gyro is9

ω̃ = ω + β + ηv (11a)

β̇ = ηu (11b)

where ω̃ is the gyro measurement, β is the bias vector, and ηv and ηu are zero-mean Gaussian processes
with spectral densities σ2

vI3×3 and σ2
uI3×3, respectively. The dynamic model replacement form of the filter

leverages the fact that ηv is very small for most gyroscopes, and the angular rate estimate is determined by
estimating the bias vector and subtracting it from the gyro readings:

ω̂ = ω̃ − β̂ (12)

where ω̂ is the angular rate estimate and β̂ is the bias estimate. This formulation has the advantage that it does
not require knowledge of command torques, and does not require process noise compensation for unknown
disturbance torques. However, process noise compensation is required in the attitude state to account for the
gyro noise, as will be shown.

Multiplicative Extended Kalman Filter

The estimated states in the filter are the attitude and the bias vector. A full derivation of this filter can
be found in (Reference 10), and only its key components are summarized here for brevity. The attitude is
represented using the form of the MEKF presented earlier, except the attitude state is represented as δα,
where

δα = 2δ% (13)

This formulation is chosen as it simplifies the attitude kinematics. Additionally, δα has physical significance
as errors in roll, pitch, and yaw. Defining the error in the angular rate and bias estimates to be

δω ≡ ω − ω̂ (14a)

∆β ≡ β − β̂ (14b)

and substituting Equations (11a) and (12) yields

δω = −(∆β + ηv) (15)

Substituting Equations (13) and (15) into the quaternion kinematics given in Eq. (2) gives the linearized
error-state kinematics:

δα̇ = −[ω×]δα− (∆β + ηv) (16)

The EKF state vector is given by
∆x(t) =

[
δα(t)T ∆β(t)T

]T
(17)
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and the linearized error model is given by

∆ẋ(t) = F (t)x(t) +G(t)w(t) (18)

where
w(t) =

[
ηv(t)

T ηu(t)T
]T

(19)

and

F (t) =

[
−[ω̂(t)×] −I3×3

03×3 03×3

]
(20a)

G(t) =

[
−I3×3 03×3

03×3 I3×3

]
(20b)

Since the gyro readings appear directly in the measurement model, the gyro noise ηv appears as process noise
in the attitude state. The process noise covariance matrix is written as

Q(t) =

[
σ2
vI3×3 03×3

03×3 σ2
uI3×3

]
(21)

Attitude measurements are typically unit vector measurements, for example from a star tracker, sun sensor,
magnetometer, or earth horizon sensor. If these measurements are denoted b̃1, b̃2, ..., b̃n, the measurement
vector at time k is then given by

ỹk =
[
b̃T1,k b̃T2,k . . . b̃Tn,k

]T
(22)

and the measurements can be modeled as

ỹk =
[
(A(q)r1)T (A(q)r2)T . . . (A(q)rn)T

]T
+ vk (23)

where vk is the measurement noise. The vector measurements are unit vectors, and thus the 3× 3 covariance
matrix R would be singular. However, Shuster has shown that for the MEKF, this can be replaced with11

Rk = diag
[
σ2

1I3×3 σ2
2I3×3 . . . σ2

nI3×3

]
(24)

The sensitivity matrix for all the measurements is given by

Hk(x̂−
k ) =


[A(q̂−)r1×] 03×3

[A(q̂−)r2×] 03×3

...
...

[A(q̂−)rn×] 03×3

 (25)

The standard EKF update and covariance propagation can now be applied.

Unscented Filter

The Unscented Filter propagates the uncertainty in the system forward by creating a distribution of ”sigma
points” that capture the mean and covariance of the distribution, and propagating these forward through the
model. This eliminates the need for linearization of the dynamics and use of the F and H matrices above.
Crassidis and Markley have developed the Unscented Filter for attitude estimation using dynamic model
replacement.12 The key components of this filter as they relate to this work are briefly summarized below.

The quaternion kinematics follow the same form as in Eq. (2). The error state is defined as in Eq. (5).
However, unlike in the EKF, estimating the vector part of the error quaternion, δ%, does not work well. If
this is chosen as the attitude state, and the sigma point distribution is large, it is possible that the sigma points
have ||%|| > 1. This is not physically realizable, and prohibits the use of Eq. (6). Additionally, the small
angle assumption used in Eq. (10) does not hold, and poor filter performance may occur if this quaternion
is normalized. As such, a three-parameter representation of the error state is used, which ensures that there
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are no constraints that can be violated. Note that this approach could also be used with the EKF, as presented
in (Reference 6). The chosen parameterization is a vector of generalized Rodrigues parameters for the error
state. This is defined as13

p ≡ f δ%

a+ δq4
(26)

where a is a parameter from 0 to 1 and f is a scale factor. By choosing f = 2(a + 1), ||δp|| is equal to the
attitude error δα for small errors. The inverse of this relation is given by13

δq4 =
−a||δp||2 + f

√
f2 + (1− a2)||δp||2

f2 + ||δp||2
(27a)

δ% = f−1(a+ δq4)δp (27b)

The dynamic model replacement is carried out as in the EKF. Note that since the bias vector is being esti-
mated, and is subtracted from ω̃ in the propagation, this must be done for each sigma point:

ω̂+
k (i) = ω̃k − χβk(i) (28)

where χβk(i) refers to the bias vector portion of the sigma point i. The standard Unscented Filter method is
now employed; further explanation is omitted for brevity.

ANGULAR RATE FILTERS

The dynamic model replacement formulations that have been shown are advantageous in that they do not
require knowledge of command torques or process noise compensation for disturbance torques. For gyros
with a small σv , this can be advantageous. However, MEMS gyros typically have σv values that are several
orders of magnitude higher than traditional mechanical gyros. Since σv appears as process noise in the
attitude state when dynamic model replacement is used, this can lead to poor angular rate estimates, and
subsequent loss of attitude accuracy between attitude measurements, even if a high-accuracy attitude sensor
such as a star tracker is used. This can be limiting in applications requiring precision-pointing applications.
Utilizing a full-state filter with the estimated state vector containing

x̂ =
[
δαT ω̂T β̂T

]T
(29)

can yield better results. This section presents forms of the EKF and Unscented Filter that make use of angular
rate as an estimated state.

Multiplicative Extended Kalman Filter

The MEKF is constructed as before, but now there are 9 estimated states instead of 6. The angular velocity
estimate is computed from the filter, not directly from the gyro reading. The discrete error-state transition
matrix for this case is given by

Φ =

Φ11 Φ12 03×3

03×3 I3×3 03×3

03×3 03×3 I3×3

 (30a)

Φ11 = I3×3 − [ω̂×]
sin(||ω̂||∆t)
||ω̂

+ [ω̂×]2
1− cos(||ω̂||∆t)

||ω̂||2
(30b)

Φ12 = [ω̂×]
1− cos(||ω̂||∆t)

||ω̂||2
− I3×3∆t− [ω̂×]2

||ω̂||∆t− sin(||ω̂||∆t)
||ω̂||3

(30c)

The measurement vector now includes the gyro measurements as well as the vector attitude measurements:

ỹk =
[
ω̃Tk b̃T1,k b̃T2,k . . . b̃Tn,k

]T
(31)
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Referring to the gyro measurement model in Eq. (11a), the sensitivity matrix is computed as

Hk(x̂−
k ) =


03×3 I3×3 I3×3

[A(q̂−)r1×] 03×3 03×3

[A(q̂−)r2×] 03×3 03×3

...
...

...
[A(q̂−)rn×] 03×3 03×3

 (32)

The gyro noise ηv now appears in the measurement covariance:

Rk = diag
[(

σ2
v

∆t + 1
3σ

2
u∆t

)
I3×3 σ2

1(I3×3 − (Ar1)(Ar1)T ) . . . σ2
n(I3×3 − (Arn)(Arn)T

]
(33)

There still exists process noise in the bias states due to ηu. Additionally, there is now process noise in the
angular rate states due to accelerations caused by disturbance torques or uncertainty in commanded torques.
If this noise is denoted ηω and is also assumed to be zero-mean Gaussian with spectral density σω , then the
discrete-time process noise covariance matrix is

Q =

 1
3σ

2
ω∆t3 1

2σ
2
ω∆t2 0

1
2σ

2
ω∆t2 σ2

ω∆t 0

0 0 σ2
u∆t

 (34)

It is noted that if command torques are applied, these must be integrated forward in the dynamics model, i.e.

Iω̇ = τ (35)

where I is the spacecraft’s inertia matrix and τ is the vector of torques. The standard EKF update and
covariance propagation can now be applied.

Unscented Filter

As with the dynamic model replacement formulation, an Unscented Filter can also be used. (Reference 14)
presents a formulation of the Unscented Filter that estimates attitude, angular rate, and biases, but the attitude
is estimated as the vector portion of the error-state quaternion, δ%. As is also the case with the dynamic model
replacement filter, this state choice does not work well because large errors or uncertainties can violate the
quaternion unit norm constraint. As such, the Unscented Filter with angular rate estimation is reformulated
so that the Generalized Rodrigues Parameters of the attitude error state, δp are used to estimate the attitude.
These parameters follow the same definition as in the dynamic model replacement Unscented Filter. A full
derivation is omitted for brevity, but the standard Unscented Filtering process is followed from this point.

CHOICE OF FILTER STATES

Now that the filtering method for both cases has been discussed, it is desired to assess which choice is
more appropriate given a choice of sensors and their associated noise parameters. Qualitatively, one expects
that dynamic model replacement will perform better when gyro noise is low and disturbance accelerations are
high, and angular rate estimation will perform better when gyro noise is high and disturbance accelerations
are low.

Ideally, an analytical steady-state covariance for the attitude. Farrenkopf found an analytical steady-state
solution for two single-axis cases.9 The first uses angle and gyro bias as the states (x = [θ β]) and assumes
an angle sensor and gyro are used (ỹ = [θ̃ ω̃]). The second assumes that attitude and rate are estimated
(x = θ ω) but that only an angular sensor is used (ỹ = ω̃). Markley has extended this for the three-
axis case.15 However, if the state vector is taken to include angle, rate, and bias (x = [θ ω β]) and both
angular and rate (gyro) measurements are available, no general closed-form solution exists for the steady-
state covariance.

6



Therefore, this paper focuses on presenting results through simulation. Both the EKF and Unscented
Filter have been implemented for both the dynamic model replacement and angular rate estimation cases, and
performance between the EKF and Unscented Filter has been found to be nearly identical in each case. As
such, only EKF results will be presented in this work.

RESULTS

Case 1: Star Tracker With MEMS Gyro, Frequent Star Tracker Updates

The first case analyzed assumes a star tracker and gyro are available, and that the star tracker can provide
a reading once per second. The star tracker accuracy is assumed to be σst = 7.24× 10−4 degrees. The gyro
parameters are based on the MAX21000 MEMS gyroscope16 with σv = 0.02 deg/s and σu = 0.0075 deg/s2.
Disturbance torques are assumed to have a 1σ value of 10−5 Nm, which is based of the 6U cubesat GLADOS
being developed at the University at Buffalo. Figure 1 shows the performance of the estimator with angular
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Figure 1. Case 1: Angular Rate Filter
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Figure 2. Case 1: Dynamic Model Replacement Filter

rate, while Figure 2 shows the performance of the dynamic model replacement estimator for this case. It is
seen that both filters have similar performance in their attitude estimate. The 3σ bounds are smaller in the
dynamic model replacement case, with errors of about 0.002 degrees in two axes, compared to about 0.004
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degrees for the angular rate estimator. The third axis has a larger uncertainty in both cases, which is explained
by the fact that this is the axis which aligns with the star tracker boresight. However, the angular rate estimate
is much better in the angular rate estimator − with 3σ bounds of approximately 0.002 degrees in two axes,
compared to approximately 0.08 degrees for the dynamic model replacement estimator. This is due to the
information contributed by the star tracker to the angular rate estimate. While both filters are found to provide
good attitude estimates, if the application requires precise angular rate knowledge, such as tracking a moving
object, the angular rate estimator is advantageous.

Case 2: Star Tracker with MEMS Gyro, Infrequent Star Tracker Updates

Now, a similar case is simulated with the limitation that the star tracker update is only available once per
minute. This usage case is based off the GLADOS cubesat, which uses a payload camera for star tracking.
This camera cannot remain on continuously due to power budget limitations. The noise parameters are
assumed the same as in Case 1. Figure 3 shows the performance of the angular rate estimator and Figure
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Figure 3. Case 2: Angular Rate Filter
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Figure 4. Case 2: Dynamic Model Replacement Filter

4 shows dynamic model replacement. In this case, it is seen that the angular rate estimator performs better
for both the attitude and angular rate estimate. Attitude 3σ uncertainty for the angular rate estimator stays
between 1 and 2 degrees for each axis for the angular rate estimator, compared to between 5 and 10 degrees
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for dynamic model replacement. The angular rate 3σ uncertainties remain less than 0.02 deg/s in each axis
for the angular rate estimator, compared to approximately 0.2 deg/s for dynamic model replacement. Note
that in both filters, the attitude error and uncertainty increases significantly between star tracker updates and
the is reduced when a new star tracker observation is available, so these values would be increase with a lower
measurement frequency.

Case 3: Magnetometer, Coarse Sun Sensor, and MEMS Gyro

Now, the case of a magnetometer, coarse sun sensor, and MEMS gyro is simulated. This is a common
sensor suite for small satellites without a star tracker. The magnetometer is assumed to have σm = 4 milli-
gauss, and the sun sensor is assumed to have σss = 0.1 degrees. An International Geomagnetic Reference
Field model is assumed to be available to the spacecraft for determining the inertial direction of the reference
vectors. The gyro is assumed to be the same as in Cases 1 and 2. Figure 5 shows the performance of the
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Figure 5. Case 3: Angular Rate Filter
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Figure 6. Case 3: Dynamic Model Replacement Filter

angular rate filter and Figure 6 shows the dynamic model replacement filter. The angular rate filter is found
to have better performance in both the attitude and angular rate estimates. The 3σ attitude bounds are found
to be up to 20 degrees for the angular rate filter, and up to 50 degrees for the dynamic model replacement
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case. The 3σ angular rate bounds are found to be within 0.04 deg/s for the angular rate filter, compared to up
to 0.3 degrees for the dynamic model replacement case.

Case 4: Star Tracker and Mechanical Gyro, Infrequent Star Tracker Updates

Now, use cases are presented assuming that low-noise mechanical gyros are available, as is common on
large spacecraft. The gyro noise parameters are assumed to be σv = 2×10−5 deg/s and σu = 2×10−8 deg/s2.
This is in a typical range for such gyros.10 Figure 7 shows the performance for the angular rate filter
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Figure 7. Case 4: Angular Rate Filter
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Figure 8. Case 4: Dynamic Model Replacement Filter

and Figure 8 shows the performance for dynamic model replacement. In this case, the dynamic model
replacement filter performs better in both the attitude and angular rate estimate, with about two orders of
magnitude less uncertainty in both the attitude estimates and angular rate estimates.

Case 5: Magnetometer, Coarse Sun Sensor, Mechanical Gyro

This case revisits Case 3 with the assumption that a mechanical gyro has replaced the MEMS gyro, but
no star tracker or other high-precision attitude sensor is available. The magnetometer and sun sensor noise
are the same as in Case 3 while the gyro noise is the same as Case 4. Figure 9 shows the performance
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Figure 9. Case 5: Angular rate filter
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Figure 10. Case 5: Dynamic Model Replacement Filter

of the angular rate estimator and Figure 10 shows the performance of dynamic model replacement for this
case. It is seen that the angular rate estimator has faster convergence in the attitude estimate, but that the
dynamic model replacement filter eventually converges to a greater accuracy. Additionally, the angular rate
estimate has about an order of magnitude less uncertainty in the dynamic model replacement case. The slower
convergence of the attitude can be explained by the need for more data to condition an accurate bias estimate
in dynamic model replacement, but once the bias estimate uncertainty is low, the attitude error converges
further.

CONCULSION

Formulations of the Multiplicative Extended Kalman Filter and Unscented Filter have been presented and
implemented for both the case of a filter that estimates attitude, angular rate and gyro bias, and just attitude and
gyro bias while using dynamic model replacement for the rate estimates. These filters have been implemented
for several use cases. It is seen that given typical noise statistics of MEMS gyros, and expected disturbance
torques in the LEO environment, that a filter that estimates the angular rate performs better in every simulated
case. This is due to the high noise present in MEMS gyros. It is cautioned that this formulation benefits from
the low disturbance torques in space applications, and that application to other systems, such as Unmanned
Aerial Vehicles in the atmosphere, may not have the same result. If low-noise mechanical gyros are available,
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it is seen that dynamic model replacement using the gyro readings performs better in every simulated case.
This is due to the ability of the gyro to accurately capture disturbance torques. For small satellite applications
using MEMS gyros, it is therefore recommended that the angular rate be estimated in the filter.
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