
 

 

 

1 

 
Attitude Dynamics and Stability Analysis of a Heliogyro Solar Sail 

 

 By Adonis PIMIENTA-PENALVER1), Li-Wei TSAI2) 

Jer-Nan JUANG3), and John L. CRASSIDIS4) 

 
1) Graduate Student, Department of Mechanical & Aerospace Engineering. University at Buffalo, Amherst, NY. 

2) Graduate Student, Department of Engineering Science. National Cheng Kung University, Tainan, Taiwan.  
3) Honorary Professor, Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan. 

4) CUBRC Professor in Space Situational Awareness, Department of Mechanical & Aerospace Engineering. University at 
Buffalo, Amherst, NY. 

 
 

A heliogyro-type solar sail concept, HELIOS (High performance Enabling Low-cost Innovative Operational Solar 
sail), has been proposed and studied at NASA Langley Research Center as an alternative to deep space missions without the 
need for on-board propellant. A distributed-parameter approach was used to derive a set of partial differential equations for 
characterizing the HELIOS dynamic behavior of a spinning membrane blade in 1970s. Recently, a discrete-mass approach 
has facilitated a large amount of analysis on the spinning membrane blade. Both approaches produce identical frequencies 
for the same size of discretized model of the spinning membrane. However, further research is needed to characterize the 
stability of the structure under the projected range of orbital conditions. In this paper, we further improve upon the existing 
discrete-mass model, and we extend its application from a single membrane blade to a full description of the dynamics of 
the HELIOS system with multiple spinning membrane blades around a central hub. First, the representation of the motion 
of the blade is evolved from a system of dual coupling to become a fully-coupled description of the membrane dynamics. 
Then, the structural stiffness properties and the external forcing terms that proceed from the solar radiation pressure are 
derived and applied to the system. The flutter phenomenon, which could be significant evidence to determine the systems 
stability regions, is demonstrated through simulation. By collecting results from models consisting of an increasing number 
of point masses --and thus, increasing fidelity-- the convergent conditions for system instability (flutter) are determined. 
Additionally, the approximated dynamics of multiple-blade heliogyro structures are examined under the effect of solar 
radiation pressure. Findings confirm that additional active control actuation at the blade roots is needed to maintain 
structural integrity and perform attitude-changing maneuvers, while highlighting the need for careful sizing of the 
spacecraft hub in order to preserve a certain degree of stability. 
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Nomenclature 
  

w :  out-of-plane deflection 
v :  in-plane deflection 
u :  deflection along elastic axis 
φi :  ith segment twisting deflection 
o1,o2,o3 :  hub frame rotation (gen. coordinates) 
ωx,ωy,ωz :  body frame axes rate (quasi-coordinates) 
E :  Young’s modulus 
G :  Torsional rigidity 
mh :  hub mass 
rh :  radius of cylindrical hub 
h :  height of cylindrical hub 
m :  point mass 
r :  length of segment 
s :  blade half-width 
Ri :  position of the ith point mass 
ρ :  hub position in inertial frame 
ω0 :  nominal spin rate 
ws :  constant out-of-plane deflection 
fni :  ith segment normal resultant of SRP force 
SRP :  Solar radiation pressure 

 
Subscripts 

I,H,R,B :  inertial, hub, root, and body frames 

1.  Introduction 
 
Perhaps predictably, studies on heliogyro blade dynamics draw 
heavily on helicopter rotor theory to formulate a distributed-
parameter approaches. McNeal 1) presents an analytical model 
of uncoupled beam equations to characterize the bending and 
twisting motions; thus establishing some results that have since 
served as baseline for evaluating dynamic models. Dowell and 
Hodges 2) compare several methods of deriving equations of 
motion for rotor blades. Their formulation is extended to 
heliogyro blades by Gibbs and Dowell 3) to predict flutter 
instabilities at low levels of solar radiation pressure (SRP). 
Similarly, Natori, Nemat-Nasser, and Mitsugi,4,5) investigate 
the convergence properties of a mixed-variational approach on 
helicopter blades with low torsional stiffness and predict flutter 
for thin flexible blades under SRP. Recent research is focused 
on the identification of the structure's dynamic behavior using 
approximated models. Such is the endeavor of Scholz, Hsiao, 
and Juang 6) to study the deployment process using a lumped-
mass approximation of a blade. Juang, Hung, and Wilkie 7) 
study the principal frequencies of a discretized model of the 
uncoupled motions of a single heliogyro blade; while Huang, 
Juang, Hung, and Wilkie,8) apply and validate the same 
discretizing approach to scaled models under gravitational and 
centrifugal loads. 
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The present study attempts to improve the computationally-
friendly discretized models with the fidelity of distributed 
parameter approaches by incorporating structural stiffness 
properties onto the lumped-mass approximations of the blade. 
Initial work along this vein has already been carried out,9) where 
the stability of the blade --and thus, flutter-- is investigated at 
differing levels of solar radiation pressure and spin rates. As a 
prolongation of the work in reference 10, the present 
investigation also employs a hybrid-coordinate approach, 
following the formulation by Meirovitch,11) to represent the full 
heliogyro by adding a continuous hub to the discretized blades. 

Not unlike helicopters, the stability and attitude control in all 
six degrees of freedom of the heliogyro is achieved through the 
coordination of three pitching profiles: collective, cyclic, and 
half-pitch. Blomquist 12) compares blade modeling approaches 
and ultimately finds that, under some limiting conditions, a root 
controller for the blade pitch can completely control the thrust 
vector of a heliogyro. Juang, Lu, Horta, and Wilkie,13) 
demonstrate time and frequency-domain system identification 
methods utilizing synthetic data and introduce preliminary 
controller design. Their investigation remarks the need for a 
pitch controller which is driven toward a more complete 
dynamic model in order to achieve acceptable levels of 
damping. Guerrant, Lawrence, and Wilkie 14,15) have devoted 
efforts to developing approximate models for the blade twist 
dynamics and establishing control strategies to perform 
collective and cyclic maneuvers. Guerrant and Lawrence 16) 
then apply a nonlinear optimization approach to establish a set 
of pitch profile combinations designed to achieve any desired 
control forces, or moments, in varying mission scenarios. 
Furthermore, Guerrant 17) also studies the blade's structural 
dynamics, heliogyro orbital performance, and shows that the 
spacecraft should be fully controllable in all flight conditions. 

A common denominator among previous control research on 
heliogyros is the conclusion that the controllers must be driven 
toward models that capture more of the dynamic characteristics 
of the flexible blades. With regards to stability and control, this 
paper presents a simulation-based study of the approximate 
structural dynamics of the full heliogyro structure under the 
effects of solar radiation pressure and control command, the 
latter of which consists of actuating motors at the blade roots to 
change blade pitching, and reaction wheels to affect the hub's 
orientation. It is the desire of the investigators to showcase a 
computationally friendly manner of obtaining heliogyro 
equations of motion while reproducing as many dynamic 
effects as possible. Designing controllers based on this model 
should provide a better idea of what is realistically possible in 
orbital conditions. 

This article is organized as follows: Section 2 presents the 
system formulation, which includes the position and velocity of 
the discretized masses, the Lagrangian-based derivation of the 
equations of motion, the external forcing from actuation and 
solar radiation pressure, as well as the nominal static deflection 
on the blades. Simulation results on the dynamics and stability 
of a single blade are given in section 3.1. Furthermore, sections 
3.2, 3.3, and 3.4 present results from the 1-blade+hub, 2-
blade+hub, and 4-blade+hub systems, respectively. A final 
summary of the findings of this paper is given in section 4. 
 

2.  Attitude System Formulation 

Fig. 1.  Hybrid model: continuous hub + discrete masses. 
 

The model presented in this paper is heavily influenced by 
that of reference 7. In that paper, their approach consists of 
dividing the blade into equal sections, where the total mass is 
proportionally lumped into discrete points located at the edges 
of these sections; the point masses are separated from each 
other by massless, but rigid rods. The properties of that model 
are largely preserved in this paper except that, now, the elastic 
deformations in references 2 and 3 are re-defined as linear 
coordinates and conformed into the rigidity of the lumped-mass 
model. In contrast with the discretizing approximation of the 
blade, the hub of the heliogyro is given the shape of a thick disk 
of mass mh, radius rh and thickness h; this is done in full 
conscience of the fact that the actual mass distribution of the 
hub in a real mission would depend on the arrangement of the 
bus instruments and the inertia of each with respect to the center 
of rotation. Figure (1) depicts the pertinent system dimensions. 

A set of variables, which measure elastic deformations, has 
been defined to describe the dynamics of each section of the 
blade; they are shown in figure 2. Their formulations are similar 
to those presented by Dowell, Gibbs, and Hodges 2,3) which are 
defined on axial (u, v, and w, for the x, y, and z directions, 
respectively) and torsional (φ) elastic deformations due to stress 
and strain. It is important to note that these generalized 
coordinates are defined in each segment's rotational frame. 

Fig. 2.  Dowell & Hodges’ deformations. 
 

The generalized coordinates are collected in Eq. (1). The 
axial deformation (u) is ignored entirely in this definition 
because, as it turns out, it can be defined entirely in terms of w, 
v, and r. Note that nb and n refer to the number of blades in the 
heliogyro, and the number of segments per blade, respectively. 

𝑞𝑞 = [𝑤𝑤 𝑣𝑣 𝜑𝜑 …]𝑇𝑇  (1) 
2.1.  Position formulation 

For reference, figure 3 shows the coordinate systems utilized 
hereafter: the segment-fixed blade coordinate systems for each 
section ([exi, eyi, ezi] ∈ B, in red), the root frame ([exr, eyr, ezr] 
∈ R, in green) which is fixed to the actuator, the body-fixed 
hub coordinate system ([ex, ey, ez] ∈ H, in blue), as well as a 
representative inertial manifold ([eX, eY , eZ] ∈ I, in black). 
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Fig. 3.  Blade (red), root (green), hub (blue), and inertial (black) frames 
 

For convenience, the position of the tip masses are defined 
using Dowell & Hodges deformations (Fig. (4)) as opposed to 
using the system’s own dimensions (Fig. (3)). Eq. (2) shows the 
position of a tip mass using the deformation coordinates of Eq. 
(1). The mapping from the ith blade frame B to the root frame R 
is carried out by TRB, which is given in Eq. (3), while the 
conversion from the root frame to the hub (body) frame is 
shown in Eq. (4), where θ represents the pitching angle applied 
at the root by the actuating motor. 
𝑅𝑅𝑖𝑖 = [𝜌𝜌𝑋𝑋 𝜌𝜌𝑌𝑌 𝜌𝜌𝑍𝑍]𝐼𝐼𝑇𝑇 + 𝑇𝑇𝐻𝐻𝐻𝐻𝑇𝑇𝑅𝑅𝑅𝑅[𝑟𝑟 𝑠𝑠 0]𝐼𝐼𝑇𝑇 + 𝑅𝑅(𝑖𝑖−1)𝐻𝐻 (2) 
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(3) 

𝑇𝑇𝑅𝑅𝑅𝑅 = �
1 0 0
0 cos 𝜃𝜃 − sin 𝜃𝜃
0 sin 𝜃𝜃 cos 𝜃𝜃

� 
 

(4) 

2.2.  Energy formulation 
After deriving the velocities of the point masses using the 

transport theorem on Eq. (2) about the body rates ωx, ωy, and ωz 
the kinetic and potential energies of the system can be 
understood as follows: 

𝑇𝑇 =
𝑚𝑚
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(6) 

With regards to the potential energy of the attitude system, 
the present study attempts to incorporate elements of beam 
theory to account for some of the dynamics which might not be 
observable using a pure lumped-mass approximation. To this 
end, the deformations of the real blade --modelled as a very thin 
cantilever beam-- can be projected onto the sectional 
displacements of the lumped mass representation; the 
underlying assumption being that the in-plane, out-of-plane, 
and twisting motions can be thought of, respectively, as the 
translational and torsional vibrations of a fixed-free cantilever 
beam. In Eq. (6), the quantities E and G are the young’s 
modulus and torsional rigidity of the blades, respectively; also, 
ϵxx represents the axial strain, while ϵxy and ϵxz represent the 
shear strains. In order to obtain an approximation of these 
quantities, the relative displacements on the exi, eyi, and ezi 

directions must be defined. Following references 2 and 9, these 
are  𝑢𝑢�, 𝑣̅𝑣, and 𝑤𝑤�, respectively. Additionally, 𝜙𝜙�  corresponds 
to the total angle of twist along the elastic axis (exi). Figure 4 
depicts the aforementioned relative displacements. Note that, 
since we assume symmetry about the elastic axis (exi) of each 
segment, either point mass can be used to define the twist 
deformation. 

𝑤𝑤�𝑖𝑖 = 𝑅𝑅𝐻𝐻(𝑧𝑧)|𝑠𝑠=0
𝑣̅𝑣𝑖𝑖 = 𝑅𝑅𝐻𝐻(𝑦𝑦)|𝑠𝑠=0

𝑢𝑢�𝑖𝑖 = 𝑅𝑅𝐻𝐻(𝑥𝑥)|𝑠𝑠=0 − 𝑖𝑖 ∙ 𝑟𝑟
𝜙𝜙�𝑖𝑖 = 𝜑𝜑𝑖𝑖 + 𝜑𝜑𝑖𝑖−1 + ⋯

with

𝑤𝑤�0 = 0
𝑤𝑤�0′ = 0
𝑤𝑤�𝑛𝑛′′ = 0
𝜙𝜙�0 = 0

𝑣̅𝑣0 = 0
𝑣̅𝑣0′ = 0
𝑣̅𝑣𝑛𝑛′′ = 0
𝜙𝜙�𝑛𝑛′ = 0

 

 
(7) 

Forward and backward finite difference approximations are 
used to formulate the spatial derivatives of these quantities: 

𝑤𝑤�𝑖𝑖′ =
𝑤𝑤�𝑖𝑖 − 𝑤𝑤�𝑖𝑖−1

𝑟𝑟

𝑣̅𝑣𝑖𝑖′ =
𝑣̅𝑣𝑖𝑖 − 𝑣̅𝑣𝑖𝑖−1

𝑟𝑟

𝑢𝑢�𝑖𝑖′ =
𝑢𝑢�𝑖𝑖 − 𝑢𝑢�𝑖𝑖−1

𝑟𝑟

𝑤𝑤�𝑖𝑖′′ =
𝑤𝑤�𝑖𝑖′ − 𝑤𝑤�𝑖𝑖−1′

𝑟𝑟

𝑣̅𝑣𝑖𝑖′′ =
𝑣̅𝑣𝑖𝑖′ − 𝑣̅𝑣𝑖𝑖−1′

𝑟𝑟

𝜙𝜙�𝑖𝑖′ =
𝜙𝜙�𝑖𝑖+1 − 𝜙𝜙�𝑖𝑖

𝑟𝑟

 

 
 
 

(8) 

The strains on the membrane, provided it is imagined as a 
very thin rotor blade, are approximated in Eq. (9), where y 
represents an arbitrary position along the blade cross-section. 

𝜖𝜖𝑥𝑥𝑥𝑥 = 𝑢𝑢�𝑖𝑖′ +
𝑣̅𝑣𝑖𝑖′2 + 𝑤𝑤�𝑖𝑖′2 + 𝑦𝑦2𝜙𝜙�𝑖𝑖′2

2
               −𝑣̅𝑣𝑖𝑖′′(𝑦𝑦 cos𝜙𝜙�𝑖𝑖) − 𝑤𝑤�𝑖𝑖′′(𝑦𝑦 sin𝜙𝜙�𝑖𝑖)

𝜖𝜖𝑥𝑥𝑥𝑥 = 0 𝜖𝜖𝑥𝑥𝑥𝑥 = 𝑦𝑦𝜙𝜙�𝑖𝑖′
 

 
 

(9) 

2.3.  Lagrangian approach with hybrid coordinates 
Following the Lagrangian approach (𝐿𝐿 = 𝑇𝑇 − 𝑉𝑉) , the 

equations of motion that describe the blade behavior may 
obtained using Eq. (10). Eq. (11) is the corresponding form of 
Lagrange's equation in terms of quasi-coordinates as presented 
by Meirovitch,11) that is, the body angular rates ωx, ωy, and ωz 
are utilized in place of the generalized coordinate rates 
𝑜̇𝑜1, 𝑜̇𝑜2, and 𝑜̇𝑜3. This is done for the sake of convenience, as it 
is easier to formulate the kinetic energy, as well as any form of 
feedback control law, based on angular velocities about 
orthogonal body axes x, y, and z. 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞
� −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜏𝜏𝑞𝑞  
(10) 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� − [Ω ×]
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝐵𝐵𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐵𝐵𝑇𝑇𝜏𝜏𝑜𝑜  
(11) 

In the preceding equations, the torques applied onto each of 
the generalized coordinates, including the body rates, are given 
by τq and τo. According to mission specifications, the only 
available inputs are reaction wheel, and pitching torques at the 
root of each blade. Furthermore, [Ω×] represents the cross-
product matrix of the body rates (ωx, ωy, and ωz). The quantity 
B stands for the kinematic matrix associated with the particular 
Euler angle rotation utilized to convert from the hub (body) 
frame to an inertial frame. For the purposes of this analysis, a 
3-2-1 rotation is utilized, which suggests that, for small angles 
o1 and o2, the quasi-coordinate rates can be approximated as the 
generalized-coordinate rates, as shown in Eq. (12). 

�
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𝑜̇𝑜1
�

if  𝑜𝑜1, 𝑜𝑜2 ≪ 1  then  
𝜔𝜔𝑥𝑥 ≈ 𝑜̇𝑜1
𝜔𝜔𝑦𝑦 ≈ 𝑜̇𝑜2
𝜔𝜔𝑧𝑧 ≈ 𝑜̇𝑜3

 

 
(12) 
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2.4.  External forcing and static deflection 
In this paper, a very simple model of the effect of the SRP on 

each blade segment is set to only consider the specular 
component of the reflection, while secondary effects, such as 
albedo or self-illumination are ignored. SRP is assumed to be 
incident along the spinning-axis of the hub (body) frame. 

Equation 13 is used to approximate the SRP influence along 
the normal for each segment, where the quantity ei is the 
incident SRP vector (pegged to eZ, the spinning axis of the hub 
frame), en is the unit normal at an arbitrary point on the segment 
surface, and α represents the smallest angle between them. 

𝑓𝑓𝑛𝑛 = −𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠(cos2 𝛼𝛼)e𝑛𝑛 = −𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒𝑖𝑖 ∙ 𝑒𝑒𝑛𝑛)2e𝑛𝑛 (13) 
Because this is a discrete-mass model, the SRP is assumed to 

be equally distributed on each of the point masses. The external 
torque with respect to each generalized coordinate is found by 
applying the principle of virtual work, as shown in Eq. (14), 

𝜏𝜏𝑞𝑞 = ��𝑓𝑓𝑛𝑛𝑛𝑛 ∙
𝛿𝛿𝑅𝑅1𝑖𝑖
𝛿𝛿𝛿𝛿

+ 𝑓𝑓𝑛𝑛𝑛𝑛 ∙
𝛿𝛿𝑅𝑅2𝑖𝑖
𝛿𝛿𝛿𝛿

�
𝑛𝑛

𝑖𝑖=1

 
 

(14) 

where R1 and R2 correspond to the 1st and 2nd of the point mass 
pairs at the end, or beginning, of each blade segment. 

Fig. 4.  Diagram of SRP influence on blade surface 
 

As the entire heliogyro structure spins up, the centrifugal 
force generated by the rotation will, at some point, reach 
equilibrium with the normal force that the SRP exerts on each 
blade. This state of static deflection is obtained by setting all 
displacement variables –other than out-of-plane bending-- and 
derivatives to zero, equating with the SRP forcing, and solving 
for the permanent out-of-plane bending (ws). In Eq. (15), this 
operation would natural cancel any terms in the nonlinear mass 
matrix (Mn). 
𝑀𝑀𝑛𝑛(𝑞𝑞)[𝑞̈𝑞 𝜔̇𝜔]𝑇𝑇 + 𝐾𝐾𝑛𝑛(𝑞𝑞, 𝑞𝑞,̇ 𝜔𝜔)|𝑤𝑤=𝑤𝑤𝑠𝑠+∆𝑤𝑤

𝜔𝜔=𝜔𝜔0+∆𝜔𝜔
= 𝜏𝜏𝑞𝑞�𝑤𝑤=𝑤𝑤𝑠𝑠+∆𝑤𝑤

𝜔𝜔=𝜔𝜔0+∆𝜔𝜔
 (15) 

Similarly, the rotation about the eZ-axis in the body frame is set 
to follow a constant rpm value (ω0), around which variations 
are allowed (Δω). The analysis performed in this paper is 
carried out on the linearized system around these constant states. 
 
3.  Stability Analysis 
 

In order to understand the stability characteristics of the solar 
sail, it is necessary to study the relation between the 
spacecraft’s flight conditions and the corresponding dynamic 
response of the blades. Although other parameters that would 
affect stability can also be studied, it is evident that the single 
most important factor affecting performance is the amount of 
SRP the heliogyro is under. Therefore, this manuscript limits 
itself to studying the changing stability conditions of the 
heliogyro under differing amounts of SRP, which is, in other 

words, a study of the relation between structural stability and 
distance to the Sun. Table 1 shows some of the chosen 
simulation parameters. The effects of varying additional 
parameters such as the hub dimensions will also be discussed. 

 
Table 1.  Structural parameters 

Blade density 1490 kg/m3 
Hub mass (mh) 7.6 kg 
Blade length 220 m 
Blade width 0.75 m 
Blade thickness 2.74x10-6 m 

 
It is important to note that, although it is clear that the chosen 

representation of the blade as a system of interconnected 
masses is physically incompatible with parameters such as the 
axial and torsional stiffness, E, and G, commonly associated 
with beam theory; the goal of the approach is to develop a 
model which best conforms to known results from more 
rigorous approaches. Thus, the stiffness values are chosen so 
that the resulting simulations approach previous observations. 
Future studies should focus on deriving a rigorous way of 
assigning stiffness parameters to the proposed model. 

The simulations that follow are derived from models that 
attempt to maximize the number of segments to represent each 
blade, while maintaining the computational load reasonable, 
which is itself a subject of future research. The spinning rate for 
all simulations is set to 1 rpm, and the models are linearized 
about that value, which is the nominal spin rate given in the 
HELIOS mission parameters. 
3.1.  Single rotating blade 

Figure 5 depicts the frequency variation of a single blade 
under constant 1 rpm rotation about the ez axis, with no hub, 
under the effect of increasing solar radiation pressure. In 
concordance with previous research,11,12) the model exhibits 
coupling between the in-plane (v) and twisting (φ) modes as 
their corresponding frequencies coalesce into a flutter 
instability (red curve), which is, in other words, a 
fundamentally uncontrollable excitation of the structural modes. 
A divergence instability (blue curve) also takes place at higher 
levels of SRP. In the figure, the first twisting modes’ 
corresponding frequency ratio begins near 1.4, while that of the 
first in-plane mode starts at 0.5. The out-of-plane modes’ 
frequency ratios appear as straight lines along all SRPs, because 
it lacks coupling with other blade motions. 

Fig. 5.  Normalized frequencies (1 blade, no hub, constant spin) 
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By recording the single blade system’s first onset of flutter 
with increasing number of approximating segments, and 
assuming increased fidelity, it is possible to forecast the flutter 
conditions of the system. Figure 6 shows that, increasing the 
number of approximating segments in the model, describes an 
asymptotical trend (blue line) that converges toward the SRP 
value of 30×10-6 Pa at 1 rpm of spinning rate. If a perfectly 
reflective blade surface is assumed, this would correspond to 
0.545AU –nearly halfway to the sun. Although this result 
differs from the flutter onset SRP projected in previous NASA 
studies 18) (~40×10-6 Pa), several corrective steps can be taken 
to close this gap. This includes, as was mentioned previously, 
developing a more rigorous derivation of the stiffness 
parameters for the model, which inherently affect the flutter 
conditions. 

Fig. 6.  Projection of flutter onset SRP at 1 rpm [source: ref. (9)] 
 

3.2.  1 blade + hub 
The addition of a hub provides some stabilization to the 

spinning structure, as it carries most of the rotational inertia of 
the system. This is shown in figure 7, where divergence-type 
instability occurs at a greater value of SRP than that of the 
previous example. The model used to produce the figure is 
linearized around the nominal 1 rpm spin rate, and allowed to 
freely spin up or down from that value. 

Fig. 7.  Normalized frequencies (1 blade + hub, free spin) 
 

It is evident that the instabilities of the system are manifested 
differently due to the addition of the hub. The first twisting 
modes, with corresponding frequency ratio starting around 1.4 
in figure 7, no longer converge with the first in-plane modes of 

the blade. Essentially, in a freely spinning structure, the in-
plane modes of the blade will be subsumed by the rotation of 
the hub about the body z-axis, thus making the coupling 
between in-plane and twisting blade motions to yield to 
coupling between body rotations and the blade’s twisting 
motion. This becomes a recurring phenomenon in all models, 
and it suggests that active actuation, such as reaction wheel 
control, is necessary at the hub in order to prevent large, sudden 
hub rotations to couple with the modes of the blades. 
3.2.  2 blades + hub 

Fig. 8.  Normalized frequencies (2 blade + hub, free spin) 
 

The frequencies in figure 8 show flutter occurring in separate 
instances as the blade’s twisting frequencies (starting at a 
frequency ratio near 1.4) converge to the in-plane frequencies. 
The two twisting frequencies that start near 1.4 on the y-axis of 
the figure and the two in-plane frequencies that immediately 
precede a ratio of 1, are both symmetric and antisymmetric 
modes of the twisting, and in-plane motions, respectively. The 
distinction is made because, even though the eigenvectors of 
the system change as their respective frequencies progress 
through the figure, the initial conditions of the system could 
determine where and how the blades reach instability. 

Fig. 9.  Tip flutter (2 blade + hub, free spin) 
 
Figure 9 shows the evolution of the tip’s twist angle at a 

43×10-6 Pa level of SRP. This simulation is obtained through 
integration of the exact set of nonlinear equations of motion 
according to the proposed model using small initial conditions. 
The uncontrolled excitation of the twisting at the tip –which we 
refer to as ‘flutter’— is shown here to occur as it was 
anticipated in the analysis of the linear modes. These results for 
the two-blade heliogyro are in concordance with current studies 
being carried out at NASA under other modeling approaches. 
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3.3.  4 blades + hub 
The four-blade heliogyro simulation in figure 10 shows that 

the twisting modes encounter divergence instabilities, as 
opposed to converging to flutter conditions with the in-plane 
modes. The SRP value at the onset of instability is shown to be 
near 35×10-6 Pa, noticeably lower than in previous simulations.  

Fig. 10.  Normalized frequencies (4 blade + hub, free spin) 
 

3.4.  Hub sizing 
While the occurrence of flutter is always dependent on the 

stiffness properties of the system, as one would expect, 
instabilities may onset at smaller levels of SRP if care is not 
taken to properly size the hub. 

Fig. 11.  Flutter onset SRP vs. hub size parameters (2-blades+hub) 
 
Figure 11 charts the amount of SRP at the first onset of flutter 

as a function of the hub radius, rh, and height, h, for the two-
blade model. Results suggest that, for the two-blade model, if 
the shape of the hub is taken to be roughly cylindrical, then 
smaller diameter, and larger height offer the best performance. 
In the figure, the colored area represents size combinations 
which yield instability at all SRP levels. 

The four-blade heliogyro is, as expected, a more stable 
platform than the two-blade system. A similar analysis shows 
the same trend regarding the hub’s diameter, while the height 
of the hub is shown to have no effect on the structure’s stability. 

 
4.  Conclusions 
 

The paper shows a hybrid approach to derive equations of 
motion for a heliogyro structure with a rigid body hub, and a 
lumped-mass approximation of the blade. The latter 
incorporated elements of beam theory in order to formulate 
potential energies. The generalized force contribution from 
SRP is formulated for the system, upon which static deflection 
conditions are determined. 

The model shows promising results in approximating the 
flutter conditions of the system, and in reproducing the manner 
in which these flutter conditions are reached, as compared with 
current NASA results.18) The four-blade heliogyro is shown to 
achieve an unstable condition in a differing manner than that of 
its two-blade counterpart. Additionally, the necessity to 
properly size the hub in order to influence the range of stable 
operations is shown in a simple trade study. 

Further refinements, such as devising a rigorous manner of 
obtaining the blade stiffness parameters for each n-segment 
approximation of the blade, is necessary to validate these results.  
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