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This paper explores a new paradigm for inertial navigation systems. Errors in filter ap-

plications using inertial navigation system equations have been previously defined from an

abstract vector point-of-view. For example, the error in velocity has always been expressed

using a straight difference of the truth minus the estimate without regard to each of the

vector’s frame representations. In this paper an alternative vector state-error is defined

using common coordinates over all vector error realizations, thereby providing a true-to-

life representation of the actual errors. A modified extended Kalman filter is derived that

employs the alternative vector state error representation. Simulation results are shown

to assess the performance of the new filter design compared with the standard inertial

navigation filter.

I. Introduction

The earliest known practical application of an inertial navigation system (INS) is attributed to the
German V-2 missile in 1942 [1], which employed a gyroscope, an airspeed sensor and an altimeter. A simple
compass heading with a predetermined amount of fuel was used to guide the rocket to a target in a crude
but effective manner. Later applications by the United States led to inertial guidance systems for ballistic
missiles that could be launched from both land platforms and sea vessels. The space age brought about more
accurate INS sensors, including inertial measurement units (IMUs) made up of three gyroscopes and three
accelerometers mounted on a beryllium cube. Modern-day applications of INS with IMUs include aircraft
navigation [2], underwater vehicles [3], and robotic systems [4].

It is well-known that all IMUs drift. For example the Apollo gyroscopes drifted about one milliradian
per hour. This drift was corrected by “realigning” the inertial platform periodically through sighting on
stars. This optical sighting measurements were fused with IMU data to 1) determine the drift in the IMU,
and 2) propagate the inertial navigation equations using the IMU in “dynamic model replacement” mode
[5] when optical sightings where not available. The workhorse for this data fusion was accomplished using
the Kalman filter [6], more precisely Potter’s square root extended Kalman filter (EKF) [7]. Straightforward
application of the EKF for INS applications can be complicated by the choice of the attitude representation
though. All minimal representations of the attitude are subject to singularity issues for certain rotations [8].
The quaternion [9] representation is now becoming mainstream because of its lack of singularity and bilinear
kinematics relationship. However, handling the norm constraint is problematic. A practical solution to this
problem involves using a local (minimal) error representation, such as the small angle approximation, while
maintaining the quaternion as the global attitude representation. Rules of quaternion multiplication are
employed in the linearization process, which maintain the norm to within the first-order approximation in
the EKF. This led to the “multiplicative EKF” (MEKF) [10]. Higher-order approaches using this local/global
methodology have been applied with the sigma-point Kalman filter [11], particle filter [12], as well as other
filters and observers [13].

In most INS applications the state vector usually consists of the attitude, position, velocity, and IMU
calibration parameters such as drifts, scale factors and misalignments. Because position-type measurements

∗Graduate Research Assistant, Department of Mechanical & Aerospace Engineering. Email: mpw6@buffalo.edu. Member
AIAA.

†CUBRC Professor in Space Situational Awareness, Department of Mechanical & Aerospace Engineering. Email:
johnc@buffalo.edu. Fellow AIAA.

1 of 24

American Institute of Aeronautics and Astronautics



are usually only given, e.g. pseudoranges to GPS satellites, the observability of the attitude and gyroscope
calibration parameters is weak, which depends on the degree of motion of the vehicle [14]. Since the early
days of employing the EKF for INS applications, and even modern-day applications, the state errors are
defined as a simple difference between the truth and the estimate. Reference [15] argues that a new state-
error definition is required in which some state-error quantities are defined using elements expressed in a
common frame, which provides a realistic framework to describe the actual errors. The errors are put into a
common frame using the estimated attitude error, which led to the “geometric EKF” (GEKF). The GEKF
provides extra transport terms, due to error-attitude coupling with the states, in the filter dynamics that
can provide better convergence characteristics than the standard MEKF. The work in [15] focuses strictly on
attitude estimation, which incorporates only “body-frame” errors. In this paper the GEKF is extended to
the INS formulation. The main difference between the work in [15] and here is how errors that are expressed
in some reference-frame coordinate system are handled. A complete derivation of this error is shown here,
as well as simulation results that compare the standard INS EKF to the newly derived one.

The organization of this paper proceeds as follows. First a review of the quaternion kinematics is shown,
followed by a review of the GEKF approach. Then, the theory behind errors expressed in reference frame
coordinates is developed, which leads to a generalized theory that unified errors expressed in either body
or reference frame coordinates. Then, various INS formulations of the new theory are shown using an EKF
setting. Finally, conclusions are drawn based upon the developed theory and simulation results.

II. Reference Frames

In this section the reference frames used to derive the INS EKF formulations are summarized, as shown
in Figure 1:

• Earth-Centered-Inertial (ECI) Frame: denoted by {̂i1, î2, î3}. The î1 axis points toward the vernal

equinox direction (also known as the “First Point of Aries” or the “vernal equinox point”), the î3 axis

points in the direction of the North pole and the î2 axis completes the right-handed system (note that

the î1 and î2 axes are on the equator, which is the fundamental plane). The ECI frame is non-rotating
with respect to the stars (except for precession of equinoxes) and the Earth turns relative to this frame.
Vectors described using ECI coordinates will have a superscript I (e.g., pI).

• Earth-Centered-Earth-Fixed (ECEF) Frame: denoted by {ê1, ê2, ê3}. This frame is similar to the ECI

frame with ê3 = î3; however, the ê1 axis points in the direction of the Earth’s prime meridian, and
the ê2 axis completes the right-handed system. Unlike the ECI frame, the ECEF frame rotates with
the Earth. The rotation angle is denoted by Θ in Figure 1. Vectors described using ECEF coordinates
will have a superscript E (e.g., pE).

• North-East-Down (NED) Frame: denoted by {n̂, ê, d̂}. This frame is used for local navigation pur-
poses. It is formed by fitting a tangent plane to the geodetic reference ellipse at a point of interest
[16]. The n̂ axis points true North, the ê points East, and the d̂ axis completes the right-handed sys-
tem, which points in the direction of the interior of the Earth perpendicular to the reference ellipsoid.
Vectors described using ECI coordinates will have a superscript N (e.g., pN ).

• Body Frame: denoted by {b̂1, b̂2, b̂3}. This frame is fixed onto the vehicle body and rotates with it.
Conventions typically depend on the particular vehicle. Vectors described using body-frame coordinates
will have a superscript B (e.g., pB).

The ECEF position vector is useful since this gives a simple approach to determine the longitude and
latitude of a user. The Earth’s geoid can be approximated by an ellipsoid of revolution about its minor axis.
A common ellipsoid model is given by the World Geodetic System 1984 model (WGS-84), with semimajor
axis a = 6, 378, 137.0 m and semiminor axis b = 6, 356, 752.3142 m. The eccentricity of this ellipsoid is given
by e = 0.0818. The geodetic coordinates are given by the latitude φ, longitude λ and height h. To determine
the ECEF position vector, the length of the normal to the ellipsoid is first computed, given by

N =
a

√

1− e2 sin2 φ
(1)
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Figure 1. Definitions of Various Reference Frames

Then, given the observer geodetic quantities φ, λ and h, the observer ECEF position coordinates are com-
puted using

x = (N + h) cosφ cosλ (2a)

y = (N + h) cosφ sinλ (2b)

z = [N(1− e2) + h] sinφ (2c)

The conversion from ECEF to geodetic coordinates is not straightforward, but a closed-form solution is
given in Ref. [18]. The conversion from ECEF coordinates to NED coordinates involves a rotation matrix
from the known latitude and longitude, denoted by AN

E . By the definition of the NED frame, a vehicle is
fixed within this frame. This frame serves to define local directions for the velocity vector determined in a
frame in which the vehicle has motion, such as the ECEF frame. The NED frame is generally not used to
provide a vehicle’s positional coordinates, but rather to provide local directions along which the velocities
may be indicated. The positions are determined by relating the velocity vN with the derivatives of latitude,
longitude and height, and integrating the resulting equations. The attitude matrix which maps the NED
frame to the vehicle body frame is denoted by AB

N . Note that the transformation from the ECEF to the
body frame is simply given by AB

E = AB
NAN

E .

III. Quaternion Kinematics

This section provides a brief review of quaternion kinematics. For more details see Refs. [5, 9]. The
attitude matrix, A, maps from the reference frame to the vehicle body frame according to A r, where r is a
component vector given with respect to the reference frame. The quaternion is a four-dimensional vector,
defined as

q ,

[

̺

q4

]

(3)

with

̺ , [q1 q2 q3]
T = e sin(ϑ/2) (4a)

q4 = cos(ϑ/2) (4b)
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where e is the unit Euler axis and ϑ is the rotation angle [9]. A quaternion parameterizing an attitude
satisfies a single constraint given by ‖q‖ = 1. In terms of the quaternion, its associated attitude matrix is
given by

A(q) = ΞT (q)Ψ(q) (5)

with

Ξ(q) ,

[

q4I3×3 + [̺×]
−̺T

]

, Ψ(q) ,

[

q4I3×3 − [̺×]
−̺T

]

(6)

where I3×3 is a 3× 3 identity matrix, and [̺×] is the cross product matrix, defined by

[̺×] ,







0 −q3 q2

q3 0 −q1
−q2 q1 0






(7)

An advantage to using quaternions is that the attitude matrix is quadratic in the parameters and also does
not involve transcendental functions. For small angles the vector part of the quaternion is approximately
equal to half angles so that ̺ ≈ α/2 and q4 ≈ 1, where α is a vector of the roll, pitch and yaw angles. The
attitude matrix can then be approximated by A ≈ I3×3 − [α×] which is valid to within first-order in the
angles.

Successive rotations can be accomplished using quaternion multiplication. Here we adopt the conven-
tion of Ref. [10] who multiply the quaternions in the same order as the attitude matrix multiplication (in
contrast to the usual convention established by Hamiliton). A successive rotation using quaternions can be
accomplished using

A(q′)A(q) = A(q′ ⊗ q) (8)

The composition of the quaternions is bilinear, with

q′ ⊗ q = [Ψ(q′) q′]q = [Ξ(q) q]q′ (9)

Also, the inverse quaternion is defined by

q−1 ,

[

−̺
q4

]

(10)

Note that q⊗ q−1 = [0 0 0 1]T , Iq, which is the identity quaternion.
With attitude parameterized by the quaternion q, the physical model is then the quaternion kinematics,

given by

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q =

1

2

[

ω

0

]

⊗ q (11)

where ω , ωB
B/I is the angular velocity vector of the B frame relative to the I frame expressed in B

coordinates, and

Ω(ω) ,

[

−[ω×] ω

−ωT 0

]

(12)

Also, the derivative of q−1 can be shown to be given by [19]

q̇−1 = −1

2
q−1 ⊗

[

ω

0

]

(13)

The gyro measurement model is given by

ω̃B
B/I = (I3×3 +Kg)ω

B
B/I + βg + ηgv (14a)

β̇g = ηgu (14b)

4 of 24

American Institute of Aeronautics and Astronautics



where βg is the gyro “bias”, Kg is a diagonal matrix of gyro scale factors, and ηgv and ηgu are zero-mean
Gaussian white-noise processes with spectral densities given by σ2

gvI3×3 and σ2
guI3×3, respectively. The

accelerometer measurement model is given by

ãB = (I3×3 +Kg)a
B + βa + ηav (15a)

β̇a = ηau (15b)

where βa is the accelerometer “bias”, Ka is a diagonal matrix of accelerometer scale factors, and ηav and
ηau are zero-mean Gaussian white-noise processes with spectral densities given by σ2

avI3×3 and σ2
auI3×3,

respectively. We should note that most manufacturers give values for σgv and σav, but not σgu and σau. The
scale factors are assumed to be small enough so that the approximation (I+K)−1 ≈ (I−K) is valid for both
the gyros and acclerometers. Simulating gyro and accelerometer using computers is not easy since continuous
measurements cannot be generated using digital computers. A discrete-time simulation is possible using the
spectral densities though [5]. The gyro measurement can be simulated using

ω̃k+1 = ωk+1 +
1

2
(βgk+1

+ βgk) +

(

σ2
gv

∆t
+

1

12
σ2
gu ∆t

)1/2

Ngvk (16a)

βgk+1
= βgk + σgu ∆t1/2Nguk

(16b)

where the subscript k denotes the kth time-step, ∆t denotes the sampling interval, and Ngvk and Nguk

are zero-mean Gaussian white-noise processes with covariance each given by the identity matrix. Replacing
ωk+1 with (I3 +Kg)ωk+1 in Eq. (16a) provides the discrete-time model for Eq. (14). A similar model can
be employed for the discrete-time accelerometer measurement.

IV. Geometric Filtering

This section provides a review of the GEKF (more details can be found in Ref. [15]). Ideally, the appro-
priate filter would employ state errors between the true variables (q, β) and their corresponding estimates

(q̂, β̂) defined by

dq , q⊗ q̂−1 ≡
[

d̺T dq4
]T

(17a)

dβ , AT (dq)β − β̂ (17b)

where β is any state expressed in body-frame coordinates, such a strapdown gyro-bias state, and all realiza-
tions of dβ are expressed within the mean (estimated) coordinate frame. Also, A(dq) is the attitude-error
matrix that maps mean-frame quantities to their respective true frames. The first-order approximation of
the attitude error-quaternion dq is given by dq ≈ [ 12dα

T 1]T [10], where dα is a vector of small, roll, pitch
and yaw angles for any rotation sequence. Then the rotation matrix in Eq. (17b) is approximated by

A(dq) ≡ A(dα) ≈ I3×3 − [dα×] (18)

with dα = 2d̺. Because the series expansions deriving the EKF are truncated to first-order, a linearized ap-
proximation is adequate because higher-order terms will ultimately be discarded. Thus, the error definitions
are related according to

q− q̂ ≈ 1

2
Ξ(q̂)dα (19a)

β − β̂ ≈ [β̂×]dα+ dβ (19b)

where the approximation to the attitude matrix in Eq. (18) is used in obtaining Eq. (19b). Equation (19a)
is recognized as the mapping employed by the “reduced covariance” approach to deriving the MEKF [10].
Assembling the components of Eq (19) leads to

∆x ≈ Cdx (20)
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where ∆x , [(q − q̂)T (β − β̂)T ]T , dx , [dαT dβT ]T , and the “error map” C is defined according to

C ,

[

1
2Ξ(q̂) 04×3

[β̂×] I3×3

]

(21)

where 0m×n is an m× n matrix of zeros.

A. Propagation

The dynamic model is given by
ẋ = f(x, w) (22)

where x is the n×1 state vector, and w is the zero-mean Gaussian process noise vector with spectral density
given by Q. Following classical developments of the EKF, the estimated dynamics follow

˙̂x = f(x̂) (23)

The standard EKF approximates the local dynamics with the truncated Taylor series expansion, given by

ẋ ≈ f(x̂) + Fa∆x+Gaw (24)

which is expanded about the approximate conditional mean x̂ (and about the mean process noise vector,
ŵ = 0). Also, Fa and Ga are the standard linearized state and process noise matrices, respectively. In
the GEKF the standard EKF error definition ∆x is replaced using the relationship of Eq. (20). The state
dynamics in the GEKF are given by

ẋ = f(x̂) + FaCdx+Gaw (25)

The error dynamics in the GEKF can be shown to be given by

dẋ = Fgdx+Ggw (26)

where

Fg = (CTC)−1CT (FaC − Ċ) (27a)

Gg = (CTC)−1CTGa (27b)

Reference [15] proves that both Fg and Gg are unique. The GEKF error-covariance, P , is governed by the
differential equation

Ṗ = FgP + PFT
g +GgQGT

g (28)

Equations (23) and (28) comprise the propagation stage of the GEKF algorithm.

B. Update

Consider the following discrete-time measurement:

ỹk = hk(xk) + vk (29)

where vk is a zero-mean Gaussian noise process with covariance Rk. Expanding hk(xk) in a Taylor series
about the a priori state estimate, x̂−

k , and truncating to first-order leads to

hk(xk) ≈ hk(x̂
−

k ) +HkC
−

k dx−

k (30)

where C−

k , C(t−k ) and dx−

k denote the a priori error map and state error, respectively, and Hk is the usual
EKF sensitivity matrix. The update in the GEKF is given by the usual form:

x̂+
k = x̂−

k +Kk

[

ỹk − hk(x̂
−

k )
]

(31)

The gain equation in the GEKF is different than the standard EKF though. This is given by

Kk = C−

k P−

k [C−

k ]THT
k

[

HkC
−

k P−

k [C−

k ]THT
k +Rk

]−1
(32)
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Table 1. Geometric Extended Kalman Filter

Parameter Value

Model ẋ = f [x(t), w(t)], E{w(t)wT (τ)} = Q(t)δ(t− τ)

ỹk = hk(xk) + vk, E{vkv
T
k } = Rk

Initialize x̂(t0) = x̂0

P(t0) = E
{

dx0 dx
T
0

}

Gain K̄k = P−

k H̄T
k [H̄kP−

k H̄T
k + Rk]

−1

H̄k = HkC
−

k

Hk =
∂h

∂x

∣

∣

∣

∣

x̂
−

k

∆xk = Ckdxk

Update

[

q̂+
k

β̂+
k

]

=

[

q̂−

k

β̂−

k

]

+ C−

k K̄k

[

ỹk − hk(x̂
−

k )
]

q̂+
k ← q̂+

k /‖q̂+
k ‖

P+
k = M̄k

{

[I(n−1)×(n−1) − K̄kH̄k]P−

k [I(n−1)×(n−1) − K̄kH̄k]
T + K̄kRkK̄

T
k

}

M̄T
k

M̄k ,
(

[C+
k ]TC+

k

)−1
[C+

k ]TC−

k

Propagation ˙̂x = f(x̂)

Ṗ = FgP + PFT
g +GgQGT

g

Fg = (CTC)−1CT (FaC − Ċ), Gg = (CTC)−1CTGa

Fa =
∂f

∂x

∣

∣

∣

∣

x̂

, Ga =
∂f

∂w

∣

∣

∣

∣

x̂

Also, the error-covariance update is different, which is given by

P+
k = M̄k

{

[I(n−1)×(n−1) − K̄kH̄k]P−

k [I(n−1)×(n−1) − K̄kH̄k]
T + K̄kRkK̄

T
k

}

M̄T
k (33)

where H̄k , HkC
−

k and K̄k , P−

k H̄T
k [H̄kP−

k H̄k + Rk]
−1, and the transformation M̄k is given by

M̄k ,
(

[C+
k ]TC+

k

)−1
[C+

k ]TC−

k (34)

Note that as x̂−

k approaches x̂+
k , the transformation M̄k approaches identity. Note that the state is reduced

by 1 as evident by the use of the (n− 1)× (n− 1) identity matrix in Eq. (33). This is due to the fact that a
local (minimal) error representation is used for the attitude error, as discussed in Ref. [10]. Equations (31)
and (33) define the GEKF update stage. A summary of the GEKF is shown in Table 1. It should be noted
that the quaternion update arises from a multiplicative update [10], even though it can be written as an
additive update, i.e. the update maintains quaternion normalization to within first order.

V. Geometric Body and Reference Frame Errors

The derivation in Ref. [15] assumes that errors exist in only the body frame, which will be shown
explicitly shortly. For example, gyro biases are associated with a vehicle’s body frame, and all realizations
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of the stochastic errors are given with respect to this frame. However, INS applications also have errors
associated with respect to some reference frame. For example, the velocity is defined with respect to a
specified reference frame, and all realizations of the stochastic errors are given with respect to this frame.
A complete characterization of errors in both the body frame and reference frame requires four frames: 1)
True Reference R, Mean Reference R̂, True Body B, and Mean Body B̂. The body-frame error-quaternion
is given by

dqB = qBR ⊗ qRR̂ ⊗ qR̂B̂ (35)

where qBR maps from the true reference to the true body, qRR̂ maps from the mean reference to the true
reference, and qR̂B̂ maps from the mean body to the mean reference. The reference-frame error-quaternion
is given by

dqR = qR̂B̂ ⊗ qB̂B ⊗ qBR (36)

where qR̂B̂ maps from the mean body to the mean reference, qB̂B maps from the true body to the mean
body, and qBR maps from the true reference to the true body. These conventions are chosen so that if qRR̂

and qB̂B are both the identity quaternions, then the error-quaternions would follow the Ref. [10] for the
body-frame error, and Ref. [20] for the reference-frame error conventions directly. The true and estimated
quaternions are equivalent to

q ≡ qBR (37a)

q̂ ≡ qB̂R̂ (37b)

Then

dqB = q⊗ dq−1
R ⊗ q̂−1 (38a)

dqR = q̂−1 ⊗ dq−1
B ⊗ q (38b)

and

dq
−1
B = q̂⊗ dqR ⊗ q−1 (39a)

dq−1
R = q−1 ⊗ dqB ⊗ q̂ (39b)

It is now shown that these four frames are not independent of each other. This is first done by deriving
the kinematics for dqB and dqR. Taking the time derivative of the expressions in Eq. (38) gives

dq̇B = q̇⊗ dq−1
R ⊗ q̂−1 + q⊗ dq̇−1

R ⊗ q̂−1 + q⊗ dq−1
R ⊗ ˙̂q

−1
(40a)

dq̇R = ˙̂q
−1 ⊗ dq−1

B ⊗ q+ q̂−1 ⊗ dq̇−1
B ⊗ q+ q̂−1 ⊗ dq−1

B ⊗ q̇ (40b)

Taking the time derivative of the expressions in Eq. (39) gives

dq̇−1
B = ˙̂q⊗ dqR ⊗ q−1 + q̂⊗ dq̇R ⊗ q−1 + q̂⊗ dqR ⊗ q̇−1 (41a)

dq̇−1
R = q̇−1 ⊗ dqB ⊗ q̂+ q−1 ⊗ dq̇B ⊗ q̂+ q−1 ⊗ dqB ⊗ ˙̂q (41b)

Substituting Eqs. (39b) and (41b) into Eq. (40a) gives

dq̇B = q̇⊗ q−1 ⊗ dqB + q⊗ q̇−1 ⊗ dqB + dq̇B + dqB ⊗ ˙̂q⊗ q̂−1 + dqB ⊗ q̂⊗ ˙̂q
−1

(42)

Substituting Eqs. (11) and (13), and their respective estimated quantities, given by the following kinematics
relations:

˙̂q =
1

2

[

ω̂

0

]

⊗ q̂ (43a)

˙̂q
−1

= −1

2
q̂−1 ⊗

[

ω̂

0

]

(43b)

into Eq. (42) gives 0 = 0. This clearly shows that the four frames are not independent.
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Another approach provides the same conclusion. Taking the time derivative of dqR⊗dq−1
R = Iq leads to

dq̇−1
R = −dq−1

R ⊗ dq̇R ⊗ dq−1
R (44)

Using this equation in Eq. (40a) leads to

dq̇−1
B = −dq−1

B ⊗ dq̇B ⊗ dq−1
B (45)

which shows that dqB ⊗ dq−1
B = Iq, since Eq. (45) can be derived from taken the time derivative of

dqB ⊗ dq−1
B = Iq. This again shows that the four frames are not independent of each other.

Reference [15] states that every realization of the geometrically defined error must be expressed with
respect to the same coordinate basis. Therefore, in order to express the body-frame frame errors when errors
exist in both the body and reference frames it is argued here that dqB is the quaternion that maps the mean
body-frame vectors to the true body-frame vectors given the reference frame. The same analogy holds for
dqR. The errors are now defined using a conditional probability, given by

dqB , E{qBR ⊗ qRR̂ ⊗ qR̂B̂ | R̂} = q⊗ q̂−1 (46a)

dqR , E{qR̂B̂ ⊗ qB̂B ⊗ qBR | B̂} = q̂−1 ⊗ q (46b)

Since the mean reference frame is given in the definition of Eq. (46a) then it is not treated as a random
variable from a conditional point-of-view, which resolves the frame independence issue. Note that B̂ and R̂
are still random variables. The conditional probability definition is required to ensure that the errors in the
body and reference frames have physical meaning.

Now that the body and reference error frame definitions have been established, the relationships between
them are derived. Suppose that representations of some true vector are given in the body frame, denoted
by βB, and in the reference frame, denoted by βR. The mapping between these two vectors is given by the
attitude matrix A(q) with

βB = A(q)βR (47)

The attitude matrix equivalent of Eq. (46a) for the body-frame error definition is given by

AB(dq) = A(q)AT (q̂) (48)

Solving Eq. (48) for A(q), and substituting the resultant into Eq. (47) gives

βB = AB(dq)A(q̂)βR (49)

The conditional body-frame estimate, i.e. given the mean reference frame, for βB is given by

β̂B , E{βB|R̂} = A(q̂)βR (50)

Using Eq. (50) in Eq. (49) gives

βB = AB(dq)β̂B (51)

These equations are consistent with previously defined body-frame error:

dβB , AT
B(dq)βB − β̂B (52)

Substituting Eq. (49) and using Eq. (50), or substituting Eq. (50) and using Eq. (49), in Eq. (52) both give
dβB = 0. This analysis shows why Eq. (46a) is called the “body-referenced” error in Ref. [10], although
it is not explicitly shown there. It is derived here explicitly to show the consistency of the geometrically
defined body-error representation. The “unframed” error definition in Ref. [10] is not consistent with the
geometrically defined body-error representation though. This unframed body-error definition is given by

δβB , βB − β̂B (53)

which is the same error definition used in all filter implementations, dating back to the earliest days of
attitude estimation and inertial navigation, before the geometrically consistent filter in Ref. [15] was derived.
Substituting Eq. (51) into Eq. (53) shows that δβB clearly does not achieve the goal of having errors
represented in common frames.
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The attitude matrix equivalent of Eq. (46b) for the reference-frame error definition is given by

AR(dq) = AT (q̂)A(q) (54)

which is consistent with the definition given in Ref. [20]. Solving this equation for AT (q), and substituting
it into βR = AT (q)βB gives

βR = AT
R(dq)A

T (q̂)βB (55)

The conditional reference-frame estimate, i.e. given the mean body frame, for βR is given by

β̂R , E{βR|B̂} = AT (q̂)βB (56)

Solving Eq. (55) for βB, and substituting the resultant into Eq. (56) gives

β̂R = AR(dq)βR (57)

Equations (51) and (57) have a similar form but use two different attitude-error representations. Also, note
that AR(dq) 6= AT

B(dq). Whereas AB(dq) maps mean-frame body quantities to their respective true body
frames, AR(dq) maps true-frame reference quantities to their respective mean reference frames. This is
consistent with the following reference-frame error definition:

dβR , AR(dq)βR − β̂R (58)

Substituting Eq. (57) into Eq. (58) gives dβR = 0, which is the desired result. As with the unframed
body-error representation, the unframed reference-error representation, defined by

δβR , βR − β̂R (59)

does not yield a frame consistent representation, which is commonly employed in INS filter applications.
The body-frame error-kinematics follow [15]

ȦB(dq) = −AB(dq)[dωB×] (60)

where
dωB , AT

B(dq)ωB − ω̂B (61)

It is explicitly stated here that the true and estimated angular velocities are expressed in body-frame co-
ordinates by the subscript B. Note that Eq. (61) shows a mapping of the body-frame angular velocities
into a common frame, which is the mean frame in this case. This is akin to what is commonly seen in
attitude control designs, where the desired angular velocity and actual angular velocity are also mapped into
a common frame [21]. The reference-frame error-kinematics can be shown to be given by

ȦR(dq) = −[dωR×]AR(dq) (62)

where
dωR , AT (q̂)(ωB − ω̂B) (63)

Note that a straight difference of ωB and ω̂B now appears. This seems unnatural in the context of common
frame error representations discussed in this paper. But this “unframed” difference actually comes about
from the reference-frame error definition given by Eq. (46b), in which the mean body-frame is assumed to
be given. By this conditional expectation any reference-frame error definition involving body-frame vectors
does not require that the body-frame vectors be mapped into a common frame. Thus the unframed angular
velocity in Eq. (63) is perfectly reasonable under this definition.

It is important to note that any reference-frame vector would still be mapped into a common frame under
Eq. (46b) though. The respective true and estimated reference-frame angular velocities are given by

ωR = AT (q)ωB (64a)

ω̂R = AT (q̂)ω̂B (64b)
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They are also referred to as the “space-referenced angular velocity” in Ref. [5]. Solving Eq. (64) for ωB and
ω̂B, and substituting their resultants into Eq. (63) gives

dωR = AR(dq)ωR − ω̂R (65)

where Eq. (54) has been used. It is now seen that the reference-frame angular velocities are mapped into a
common frame.

The same analogy can be shown when reference-frame vectors are used in the body-frame error-kinematics.
Solving Eq. (64) for ωB and ω̂B, and substituting their resultants into Eq. (61) gives

dωB = AT (q̂)(ωR − ω̂R) (66)

where Eq. (48) has also been used. It is seen here that a straight difference of the reference-frame angular
velocities is now given, which is a result of the body-frame error definition given by conditional expectation
in Eq. (46b).

In INS applications errors will be defined both in the body and reference frames. For example, body-
frame gyro biases and reference-frame velocity vectors are employed in an INS filter. At first, it would seem
that the filter design would require both Eqs. (60) and (62) to fully describe the error-kinematics for both
frames. But this is not required because AB(dq) is related to AR(dq) through

AR(dq) = AT (q̂)AB(dq)A(q̂) (67)

Thus, error-kinematics for either AB(dq) or AR(dq) can be used, and then Eq. (67) can be employed to map
between frames. Here, the body-frame error-kinematics in Eq. (60) will be employed from this point forward,
and any reference-frame errors will be mapped by Eq. (67) so that only AB(dq) needs to be employed for
both error definitions. Hence, the GEKF in Table 1 can still be directly employed even when reference-frame
errors are present. From this point forward it will be evident when body-frame vectors and reference-frame
vectors are used, so the subscripts B and R will be dropped to simplify the notation.

VI. Inertial Navigation Filter Applications

This section provides applications of the GEKF for INS applications using the ECEF frame and NED
frame [22]. Derivations for the GEKF are shown using both the linearization approach shown in the appendix
of Ref. [15], as well as Eq. (27). Both approaches are identical for the specific models in this section, but
Eq. (27) is more general.

A. ECEF Formulation

In this section the implementation equations for the EKF and GEKF using the ECEF formulation are shown.
Here the quaternion maps from quantities from the E frame to the B frame. The truth equations are given
by

q̇ =
1

2
Ξ(q)ωB

B/E (68a)

ωB
B/E = (I3×3 −Kg)(ω̃

B
B/I − βg − ηgv)−AB

E(q)ω
E
E/I (68b)

v̇E = −[ωE
E/I×][ωE

E/I×]pE − 2[ωE
E/I×]vE +AE

B(q)a
B + gE (68c)

aB = (I3×3 −Ka)(ã
B − βa − ηav) (68d)

gE =
−µ
||pE ||3p

E (68e)

β̇g = ηgu (68f)

β̇a = ηau (68g)

k̇g = 0 (68h)

k̇a = 0 (68i)

where kg and ka are the elements of the diagonal matrices Kg and Ka, respectively. Also, where ωE
E/I is

the angular velocity of the E frame relative to the I frame expressed in E coordinates. The angular velocity
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vector is simply given by ωE
E/I = [0 0 ωe]

T , where ωe is the Earth’s rotation rate given as (from WGS-84)

7.292115× 10−5 rad/sec. The gravity model is given by

gE =
−µ
||pE ||3p

E (69)

where µ = 3.986004415 km3/sec2.
The estimated quantities are given by

˙̂q =
1

2
Ξ(q̂)ω̂B

B/E (70a)

ω̂B
B/E = (I3×3 − K̂g)(ω̃

B
B/I − β̂g)−AB

E(q̂)ω
E
E/I (70b)

˙̂v
E
= −[ωE

E/I×][ωE
E/I×]p̂E − 2[ωE

E/I×]v̂E +AE
B(q̂)â

B + ĝE (70c)

âB = (I3×3 − K̂a)(ã
B − β̂a) (70d)

ĝE =
−µ
||p̂E ||3 p̂

E (70e)

˙̂
βg = 0 (70f)

˙̂
βa = 0 (70g)

˙̂
kg = 0 (70h)

˙̂
ka = 0 (70i)

Note that the attitude matrix is coupled into the position, which allows estimation of the attitude from
position measurements.

1. Extended Kalman Filter Formulation

The global state vector, local state-error vector, process noise vector and spectral density used in the EKF
are defined as

x ,

























q

pE

vE

βg

βa

kg

ka

























, ∆x ,

























δα

∆pE

∆vE

∆βg

∆βa

∆kg

∆ka

























, w ,











ηgv

ηgu

ηav

ηau











(71a)

Q =











σ2
gvI3×3 03×3 03×3 03×3

03×3 σ2
guI3×3 03×3 03×3

03×3 03×3 σ2
avI3×3 03×3

03×3 03×3 03×3 σ2
auI3×3











(71b)

Note that the notation δα is used here for the attitude error-vector to specifically differentiate it from the
geometric filter definition. The error-dynamics used in the EKF propagation are given by

∆ẋ = F∆x+Gw (72)
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where

F =

























F11 03×3 03×3 F14 03×3 F16 03×3

03×3 03×3 I3×3 03×3 03×3 03×3 03×3

F31 F32 F33 03×3 F35 03×3 F37

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

























(73a)

G =

























−(I3×3 − K̂g) 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 −AE
B(q̂)(I3×3 − K̂a) 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

























(73b)

with

F11 = −
[(

ω̂B
B/E +AB

E(q̂)ω
E
E/I

)

×
]

(74a)

F14 = −(I3×3 − K̂g) (74b)

F16 = −D(ω̃B
B/I − β̂g) (74c)

F31 = −AE
B(q̂)[â

B×] (74d)

F32 = U(p̂E)− [ωE
E/I×][ωE

E/I×] (74e)

F33 = −2[ωE
E/I×] (74f)

F35 = −AE
B(q̂)(I3×3 − K̂a) (74g)

F37 = −AE
B(q̂)D(ã

B − β̂a) (74h)

where D(z) denotes a diagonal matrix made up of the elements of any vector z, and

U(p̂E) , −µ
(

I3×3

∣

∣

∣

∣p̂E
∣

∣

∣

∣

−3 − 3(p̂E)(p̂E)T
∣

∣

∣

∣p̂E
∣

∣

∣

∣

−5
)

(75)

which is the gravity gradient expression. The standard EKF can now be applied using the expressions in
this section.

2. Geometric Extended Kalman Filter Formulation

The global state and local state-error vectors in the GEKF are defined as

x ,

























q

pE

vE

βg

βa

kg

ka

























, dx ,

























dα

dpE

dvE

dβg

dβa

dkg

dka

























(76)

The quaternion error follows from Eq. (19a), and the bias and scale factor errors for the gyro and accelerom-
eter follow from Eq. (19b). The position error needs to be discussed. The dynamics now occur at the
acceleration level. The geometric position error is equivalent to the standard difference error because the
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derivative of position is velocity, which is a pure kinematic relationship, independent of the frame. Thus the
geometric position error is given by

dpE = pE − p̂E (77)

From the previous developments, i.e. with the use of Eq. (67), the geometric velocity-error is given by

dvE = AE
B(q̂)A(dq)A

B
E(q̂)v

E − v̂E (78)

where A(dq) is equivalent to AB(dq). Substituting Eq. (18) into Eq. (78) gives

dvE = vE − v̂E −AE
B(q̂)[dα×]AB

E(q̂)v
E

= vE − v̂E +AE
B(q̂)[A

B
E(q̂)v

E×]dα
= vE − v̂E + [vE×]AE

B(q̂)dα

(79)

where the identity [AB
E(q̂)v

E×] = AB
E(q̂)[v

E×]AE
B(q̂) has been used. Then the matrices C and Ċ are given

by

C =

























1
2Ξ(q̂) 04×3 04×3 04×3 04×3 04×3 04×3

03×3 I3×3 03×3 03×3 03×3 03×3 03×3

−[v̂E×]AE
B(q̂) 03×3 I3×3 03×3 03×3 03×3 03×3

[β̂g×] 03×3 03×3 I3×3 03×3 03×3 03×3

[β̂a×] 03×3 03×3 03×3 I3×3 03×3 03×3

[k̂g×] 03×3 03×3 03×3 03×3 I3×3 03×3

[k̂a×] 03×3 03×3 03×3 03×3 03×3 I3×3

























(80a)

Ċ =



























1
4Ω(ω̂

B
B/E)Ξ(q̂) +

1
2Ξ(q̂)[ω̂

B
B/E×] 04×3 04×3 04×3 04×3 04×3 04×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

−[ ˙̂vE×]AE
B(q̂)− [v̂E×]AE

B(q̂)[ω̂
B
B/E×] 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3



























(80b)

where the time derivative of Ξ(q̂) is given in Appendix A of Ref. [5]. These matrices can now be used directly
in the GEKF equations.

The matrices Fa and Ga need to be derived. In order to do this, the partial ‖q‖−2AT (q)u with respect
to q will be needed, where A(q) is any attitude matrix parameterized using the quaternion and u is any
general 3× 1 vector. This procedure follows along the lines given in Appendix A of Ref. [5], which proves

∂

∂q
[A(q)u] = 2‖q‖−2[A(q)u×]ΞT (q) (81)

The attitude matrix is given by Eq. (5). Using the identity Ξ(q)u = Ω(u)q leads to

Z ,
∂

∂q

[

‖q‖−2AT (q)u
]

=
∂

∂q

[

‖q‖−2ΨT (q)q̄
]

(82)

where q̄ , Ω(u)q. This leads to

Z = ‖q‖−2

[

∂

∂q
ΨT (q)q̄

]

+ ‖q‖−2ΨT (q)Ω(u) − 2‖q‖−4ΨT (q)Ω(u)qqT (83)

Using the identities ΨT (q)q̄ = −ΨT (q̄)q and ΨT (q̄) = −ΨT (q)Ω(u), which is Eq. (A.39f) in Ref. [5], leads
to

Z = ‖q‖−2ΨT (q)Ω(u) + ‖q‖−2ΨT (q)Ω(u) − 2‖q‖−4ΨT (q)Ω(u)qqT

= 2‖q‖−2ΨT (q)Ω(u) − 2‖q‖−4ΨT (q)Ω(u)qqT

= 2‖q‖−4ΨT (q)Ω(u)
(

‖q‖2I4×4 − qqT
)

(84)
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Next, using the identity Ψ(q)ΨT (q) = ‖q‖2I4×4 − qqT gives

Z = 2‖q‖−4ΨT (q)Ω(u)Ψ(q)ΨT (q) (85)

Finally, using the identity ΨT (q)Ω(u)Ψ(q) = −‖q‖−2[AT (q)u×], which is Eq. (A.39d) in Ref. [5], gives the
desired result:

Z = −2‖q‖−2[AT (q)u×]ΨT (q) (86)

where ‖q‖ = 1 can now be assumed. Therefore, the matrix Fa is given by

Fa =

























Fa11
04×3 04×3 Fa14

04×3 Fa16
04×3

03×4 03×3 I3×3 03×3 03×3 03×3 03×3

Fa31
Fa32

Fa33
03×3 Fa35

03×3 Fa37

03×4 03×3 03×3 03×3 03×3 03×3 03×3

03×4 03×3 03×3 03×3 03×3 03×3 03×3

03×4 03×3 03×3 03×3 03×3 03×3 03×3

03×4 03×3 03×3 03×3 03×3 03×3 03×3

























(87)

with

Fa11
=

1

2
Ω(ω̂B

B/E)− Ξ(q̂)
[

AB
E(q̂)ω

E
E/I×

]

ΞT (q̂) (88a)

Fa14
= −1

2
Ξ(q̂)(I3×3 − K̂g) (88b)

Fa16
= −1

2
Ξ(q̂)D(ω̃B

B/I − β̂g) (88c)

Fa31
= −2[AE

B(q̂)â
B×]ΨT (q̂) (88d)

Fa32
= U(p̂E)− [ωE

E/I×][ωE
E/I×] (88e)

Fa33
= −2[ωE

E/I×] (88f)

Fa35
= −AE

B(q̂)(I3×3 − K̂a) (88g)

Fa37
= −AE

B(q̂)D(ã
B − β̂a) (88h)

The matrix Ga is given by

Ga =

























− 1
2Ξ(q̂)(I3×3 − K̂g) 04×3 04×3 04×3

03×3 03×3 03×3 03×3

03×3 03×3 −AE
B(q̂)(I3×3 − K̂a) 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

























(89)

The matrices Fg and Gg can now be derived using Eq. (27).

B. NED Formulation

In this section the implementation equations for the EKF and GEKF using the NED formulation are shown.
Here the quaternion maps quantities from the N frame to the B frame. The truth equations are given by

q̇ =
1

2
Ξ(q)ωB

B/N (90a)

φ̇ =
vN

Rφ + h
(90b)

λ̇ =
vE

(Rλ + h) cosφ
(90c)
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ḣ = −vD (90d)

v̇N = −
[

vE
(Rλ + h) cosφ

+ 2ωe

]

vE sinφ+
vNvD
Rφ + h

+ aN (90e)

v̇E =

[

vE
(Rλ + h) cosφ

+ 2ωe

]

vN sinφ+
vEvD
Rλ + h

+ 2ωevD cosφ+ aE (90f)

v̇D = − v2E
Rλ + h

− v2N
Rφ + h

− 2ωevE cosφ+ g + aD (90g)

where ωB
B/N is the angular velocity of the B frame relative to the N frame expressed in B coordinates, and

Rφ =
a(1− e2)

(1− e2 sin2 φ)3/2
(91a)

Rλ =
a

(1− e2 sin2 φ)1/2
(91b)

The local gravity, g, using WGS-84 parameters, is given by

g = 9.780327(1+ 5.3024× 10−3 sin2 φ− 5.8× 10−6 sin2 2φ)

− (3.0877× 10−6 − 4.4× 10−9 sin2 φ)h+ 7.2× 10−14h2 m/sec2
(92)

where h is measured in meters. Note that Eq. (90a) cannot be used directly with the gyro measurement.
However, this problem can be overcome by using the following identity:

ωB
B/I = ωB

B/N + ωB
N/I (93)

Solving Eq. (93) for ωB
B/N and substituting ωB

N/I = AB
N (q)ωN

N/I yields

ωB
B/N = ωB

B/I −AB
N (q)ωN

N/I (94)

where

ωN
N/I = ωe







cosφ

0

− sinφ






+























vE
Rλ + h

− vN
Rφ + h

−vE tanφ

Rλ + h























(95)

Now, Eq. (90a) can be related to the gyro measurements. Also, the acceleration variables are related to the
accelerometer measurements through

aN ,







aN

aE

aD






= AN

B (q)aB = AN
B (q)(I3×3 −Ka)(ã

B − βa − ηav) (96)

where aB is the acceleration vector in body coordinates, and AN
B (q) is the matrix transpose of AB

N (q).
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The estimated quantities, assuming ωe is exact, are given by

˙̂q =
1

2
Ξ(q̂)ω̂B

B/N (97a)

ω̂B
B/N = (I3×3 − K̂g)(ω̃

B
B/I − β̂g)−AB

N (q̂)ω̂N
N/I (97b)

˙̂
φ =

v̂N

R̂φ + ĥ
(97c)

˙̂
λ =

v̂E

(R̂λ + ĥ) cos φ̂
(97d)

˙̂
h = −v̂D (97e)

˙̂vN = −
[

v̂E

(R̂λ + ĥ) cos φ̂
+ 2ωe

]

v̂E sin φ̂+
v̂N v̂D

R̂φ + ĥ
+ âN (97f)

˙̂vE =

[

v̂E

(R̂λ + ĥ) cos φ̂
+ 2ωe

]

v̂N sin φ̂+
v̂E v̂D

R̂λ + ĥ
+ 2ωev̂D cos φ̂+ âE (97g)

˙̂vD = − v̂2E

R̂λ + ĥ
− v̂2N

R̂φ + ĥ
− 2ωev̂E cos φ̂+ ĝ + âD (97h)

âN ≡







âN

âE

âD






= AN

B (q̂)âB (97i)

âB = (I3×3 − K̂a)(ã
B − β̂a) (97j)

˙̂
βg = 0 (97k)

˙̂
βa = 0 (97l)

˙̂
kg = 0 (97m)

˙̂
ka = 0 (97n)

Also, ω̂N
N/I , R̂φ, R̂λ, and ĝ are evaluated at the current estimates.

The EKF formulation is shown in Ref. [19], which is not repeated here for brevity. The global state and
local state-error vectors in the GEKF are defined as

x ,

























q

pN

vN

βg

βa

kg

ka

























, dx ,

























dα

dpN

dvN

dβg

dβa

dkg

dka

























(98)

where pN = [φ λ h]T and vN = [vN vE vD]T . The matrix Fa is given by

Fa =

























Fa11
Fa12

Fa13
Fa14

04×3 Fa16
04×3

03×4 Fa22
Fa23

03×3 03×3 03×3 03×3

Fa31
Fa32

Fa33
03×3 Fa35

03×3 Fa37

03×4 03×3 03×3 03×3 03×3 03×3 03×3

03×4 03×3 03×3 03×3 03×3 03×3 03×3

03×4 03×3 03×3 03×3 03×3 03×3 03×3

03×4 03×3 03×3 03×3 03×3 03×3 03×3

























(99)

17 of 24

American Institute of Aeronautics and Astronautics



with

Fa11
=

1

2
Ω(ω̂B

B/N )− Ξ(q̂)
[

AB
N (q̂)ω̂N

N/I×
]

ΞT (q̂) (100a)

Fa12
= −1

2
Ξ(q̂)AB

N (q̂)
∂ωN

N/I

∂pN

∣

∣

∣

∣

∣

p̂N ,v̂N

, Fa13
= −1

2
Ξ(q̂)AB

N (q̂)
∂ωN

N/I

∂vN

∣

∣

∣

∣

∣

p̂N ,v̂N

(100b)

Fa14
= −1

2
Ξ(q̂)(I3×3 − K̂g), Fa16

= −1

2
Ξ(q̂)D(ω̃B

B/I − β̂g) (100c)

Fa22
=

∂ṗN

∂pN

∣

∣

∣

∣

p̂N ,v̂N

, Fa23
=

∂ṗN

∂vN

∣

∣

∣

∣

p̂N ,v̂N

(100d)

Fa31
= −2[AN

B (q̂)âB×]ΨT (q̂) (100e)

Fa32
=

∂v̇N

∂pN

∣

∣

∣

∣

p̂N ,v̂N

, Fa33
=

∂v̇N

∂vN

∣

∣

∣

∣

p̂N ,v̂N

(100f)

Fa35
= −AN

B (q̂)(I3×3 − K̂a), Fa37
= −AN

B (q̂)D(ãB − β̂a) (100g)

The angular velocity partials are given by

∂ωN
N/I

∂pN
=

























−ωe sinφ−
vE

(Rλ + h)2
∂Rλ

∂φ
0 − vE

(Rλ + h)2

vN
(Rφ + h)2

∂Rφ

∂φ
0

vN
(Rφ + h)2

−ωe cosφ−
vE sec2 φ

Rλ + h
+

vE tanφ

(Rλ + h)2
∂Rλ

∂φ
0

vE tanφ

(Rλ + h)2

























(101a)

∂ωN
N/I

∂vN
=























0
1

Rλ + h
0

− 1

Rφ + h
0 0

0 − tanφ

Rλ + h
0























(101b)

with

∂Rλ

∂φ
=

a e2 sinφ cosφ

(1− e2 sin2 φ)3/2
(102a)

∂Rφ

∂φ
=

3a(1− e2)e2 sinφ cosφ

(1− e2 sin2 φ)5/2
(102b)

The position partials are given by

∂ṗN

∂pN
=





















− vN
(Rφ + h)2

∂Rφ

∂φ
0 − vN

(Rφ + h)2

− vE secφ

(Rλ + h)2
∂Rλ

∂φ
+

vE secφ tanφ

Rλ + h
0 − vE secφ

(Rλ + h)2

0 0 0





















(103a)
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∂ṗN

∂vN
=





















1

Rφ + h
0 0

0
secφ

Rλ + h
0

0 0 −1





















(103b)

The velocity partials are given by

∂v̇N

∂pN
=







Y11 0 Y13

Y21 0 Y23

Y31 0 Y33






,

∂v̇N

∂vN
=







Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 0






(104)

where

Y11 = −v2E sec2 φ

Rλ + h
+

v2E tanφ

(Rλ + h)2
∂Rλ

∂φ
− 2ωevE cosφ− vNvD

(Rφ + h)2
∂Rφ

∂φ
(105a)

Y13 =
v2E tanφ

(Rλ + h)2
− vNvD

(Rφ + h)2
(105b)

Y21 =
vE vN sec2 φ

Rλ + h
− vE vN tanφ

(Rλ + h)2
∂Rλ

∂φ
+ 2ωevN cosφ

− vE vD
(Rλ + h)2

∂Rλ

∂φ
− 2ωevD sinφ

(105c)

Y23 = −vE
[

vN tanφ+ vD
(Rλ + h)2

]

(105d)

Y31 =
v2E

(Rλ + h)2
∂Rλ

∂φ
+

v2N
(Rφ + h)2

∂Rφ

∂φ
+ 2ωevE sinφ+

∂g

∂φ
(105e)

Y33 =
v2E

(Rλ + h)2
+

v2N
(Rφ + h)2

+
∂g

∂h
(105f)

and

Z11 =
vD

Rφ + h
, Z12 = −2vE tanφ

Rλ + h
− 2ωe sinφ, Z13 =

vN
Rφ + h

(106a)

Z21 =
vE tanφ

Rλ + h
+ 2ωe sinφ, Z22 =

vD + vN tanφ

Rλ + h
, Z23 =

vE
Rλ + h

+ 2ωe cosφ (106b)

Z31 = − 2vN
Rφ + h

, Z32 = − 2vE
Rλ + h

− 2ωe cosφ (106c)

with

∂g

∂φ
= 9.780327[1.06048× 10−2 sinφ cosφ

− 4.64× 10−5(sinφ cos3 φ− sin3 φ cosφ)] + 8.8× 10−9h sinφ cosφ

(107a)

∂g

∂h
= −3.0877× 10−6 + 4.4× 10−9 sin2 φ+ 1.44× 10−13h (107b)

The matrix Ga is given by

Ga =

























− 1
2Ξ(q̂)(I3×3 − K̂g) 04×3 04×3 04×3

03×3 03×3 03×3 03×3

03×3 03×3 −AN
B (q̂)(I3×3 − K̂a) 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

























(108)
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The matrices C and Ċ are given by

C =

























1
2Ξ(q̂) 04×3 04×3 04×3 04×3 04×3 04×3

03×3 I3×3 03×3 03×3 03×3 03×3 03×3

−[v̂N×]AN
B (q̂) 03×3 I3×3 03×3 03×3 03×3 03×3

[β̂g×] 03×3 03×3 I3×3 03×3 03×3 03×3

[β̂a×] 03×3 03×3 03×3 I3×3 03×3 03×3

[k̂g×] 03×3 03×3 03×3 03×3 I3×3 03×3

[k̂a×] 03×3 03×3 03×3 03×3 03×3 I3×3

























(109a)

Ċ =



























1
4Ω(ω̂

B
B/N )Ξ(q̂) + 1

2Ξ(q̂)[ω̂
B
B/N×] 04×3 04×3 04×3 04×3 04×3 04×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

−[ ˙̂vN×]AN
B (q̂)− [v̂N×]AN

B (q̂)[ω̂B
B/N×] 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3



























(109b)

Finally, the Q matrix is given by Eq. (71b).

VII. Simulation Results

In this section simulation results comparing the MEKF and the GEKF are discussed for both the ECEF
and NED navigation frames. The gyro and accelerometer measurements are available at 10 Hz and GPS
measurements are also available for updates at 10 Hz. Models for these measurements are given in Ref. [5]
and Ref. [19] respectively. The total simulation time is 1800 seconds. The rotational rate profile is given 5
deg/min rotation about the x, y, and z axes for the entire simulation. There is also a constant acceleration of
0.1 m/sec2 about the x and y axes and 0.01 m/sec2 about the z axis for the entire simulation. The gyro noise
parameters are given by σgv =

√
10×10−7 rad/sec1/2 and σgu =

√
10×10−10 rad/sec3/2. The accelerometer

parameters are given by σav = 9.8100× 10−7 m/sec3/2 and σau = 6.000× 10−5 m/sec5/2. Initial biases for
the gyros and accelerometers are given by 0.01 deg/hr and 0.003 m/s2, respectively, for each axis. The gyro
scale factors are Kg = 150× 10−6I3×3 and Ka = 500× 10−6I3×3. The initial vehicle position is specified in
NED coordinates as λ0 = 38.4◦, Φ0 = −76.5◦, and h0 = 244 meters.

The results for the ECEF coordinate frame can be seen in Figure 2. The attitude errors for the GEKF and
the MEKF are illustrated in Figure 2(a) and Figure 2(b), respectively. Both converge and stay within the
3σ bounds, and it can be seen that there are no differences between the GEKF and MEKF attitude errors.
Figures 2(c) and 2(d) show the results for the position error associate with each filter. Both the GEKF and
MEKF stay within the 3σ bounds. The velocity errors are shown in Figures 2(e) and 2(f). The GEKF errors
appear larger than the MEKF errors, but this is not completely an apples-to-apples comparison. It is argued
here that the errors defined by the GEKF are the correct errors because they are frame consistent, unlike
the MEKF.

Results for the NED coordinate frame can be seen in Figure 3. Figure 3(a) shows the same convergence
properties of the GEKF filter when compared to the MEKF in Figure 3(b). This is also true for the position
errors in Figures 3(c) and 3(d). The velocity for the NED frame converges for both the GEKF and MEKF,
and the errors for both stay within their respective bounds. In Figure 3(e) it is again shown that the error
bounds do not decrease to the same level as the MEKF in Figure 3(f). This is because the errors associated
with the GEKF are in the consistent frame based on the new error definition.

The next simulation tests the convergence properties of both filters for the NED case. The simulation is
run again, but 10 degrees of error are introduced in the initial attitude estimates for both the MEKF and
GEKF. The attitude covariance for each filter is now increased to a 3σ bound of 10 degrees for each axis.
The rest of the simulation parameters are the same as before. Plots of the attitude errors for both filters
are shown in Figure 4. For this case the GEKF shows superior convergence properties over the MEKF.
Although not shown here for brevity, this is most likely due to the appearance of coupling terms in the
linearized GEKF state-error matrix over the linearized MEKF state-error matrix. These coupling terms

20 of 24

American Institute of Aeronautics and Astronautics



(a) GEKF Attitude Errors (b) MEKF Attitude Errors

(c) GEKF Position Errors (d) MEKF Position Errors

(e) GEKF Velocity Errors (f) MEKF Velocity Errors

Figure 2. Comparison of MEKF and GEKF for ECEF Frame
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(a) GEKF Attitude Errors (b) MEKF Attitude Errors

(c) GEKF Position Errors (d) MEKF Position Errors

(e) GEKF Velocity Errors (f) MEKF Velocity Errors

Figure 3. Comparison of MEKF and GEKF for NED Frame
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appear because of transport terms that exist in the GEKF in order to obtain frame-consistent errors. As
noted earlier, the GEKF errors are frame consistent, which represent the actual real-world errors over the
MEKF. This is arguably more important since in practice the accuracy of an estimate is not known and the
error bounds is the primary metric of confidence. This can improve upon other aspects such as control, data
association, tracking performance, to name a few.

(a) GEKF Attitude Errors (b) MEKF Attitude Errors

Figure 4. Comparison of MEKF and GEKF for NED Frame with Large Initial Attitude Errors

VIII. Conclusions

A new error-representation was presented in this paper for inertial navigation applications. The error-
representation is frame consistent for both body-frame and reference-frame errors. A direct relationship
between these two frames shows that even though the error-kinematics are different for the body and reference
frames only one error-kinematics needs to be used in the filter design. Here the body-frame error-kinematics is
used, which is typically used in standard inertial navigation filters. The geometric-based Kalman filter shows
that more coupling effects exist in the state-error dynamics, which leads to better convergence properties
than the standard inertial navigation Kalman filter when large initial condition errors are present. Also,
the reference errors in the geometric-based Kalman filter are different than the standard inertial navigation
Kalman filter, which is important when overall control performance is evaluated.
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