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Traditionally, attitude estimation has been performed using a combination of external

attitude sensors and internal three-axis gyroscopes. There are many studies of three-axis

attitude estimation using gyros that read angular rates. Rate-integrating gyros measure

integrated rates or angular displacements, but three-axis attitude estimation using these

types of gyros has not been as fully investigated. This paper derives a Kalman filtering

framework for attitude estimation using attitude sensors coupled with rate-integrating

gyroscopes. In order to account for correlations introduced by using these gyros, the state

vector must be augmented, compared with filters using traditional gyros that read angular

rates. Two filters are derived in this paper. The first uses an augmented state-vector form

that estimates attitude, gyro biases, and gyro angular displacements. The second ignores

correlations, leading to a filter that estimates attitude and gyro biases only. Simulation

comparisons are shown for both filters. The work presented in this paper focuses only

on attitude estimation using rate-integrating gyros, but it can easily be extended to other

applications such as inertial navigation, which estimates attitude and position.

Introduction

Strapdown gyroscopes have been used for many applications, including spacecraft attitude estimation
[1], inertial vehicle navigation [2], underwater vehicle navigation [3], robotic navigation [4], and human
navigation systems [5], to name a few. All of these applications require attitude information. Traditional
attitude estimation uses a combination of attitude sensor information, such as star trackers, with angular rate
sensors, commonly known as gyroscopes [6]. Many spacecraft, including virtually all spacecraft with stringent
pointing and/or maneuvering requirements, are provided with accurate gyros, which are the most crucial
of all the attitude sensors. A great number of attitude filters incorporate gyro information as part of the
dynamic model rather than using the gyro information as a Kalman measurement update. This alternative
is often referred to as using gyros in the dynamic-model replacement mode [7]. The reasons for favoring this
method are twofold. Firstly, gyro information may well be much more accurate than the available models of
rotational dynamics and torques, and inaccurate dynamic models could actually corrupt the gyro data. The
second reason for using gyros in dynamic replacement mode, which is particularly important for onboard
filtering, is that it requires much less computation.

The attitude kinematics differential equations are a function of the attitude and angular rate. Therefore,
using traditional gyros in dynamic-model replacement mode can be done theoretically by simply replacing
the angular rate in the kinematics model with the gyro measurement model. Many types of gyros exist, which
can be broadly classified by the physical mechanisms they use: spinning-mass gyros, optical gyros, or Coriolis
vibratory gyros. Strapdown rate-integrating gyros (RIGs) can employ any of these physical mechanisms, and
generally offer a number of unique advantages compared to conventional rate gyroscopes, including mechan-
ically unlimited dynamic range, low noise due to degenerate mode operation, and exceptional scale factor

∗CUBRC Professor in Space Situational Awareness, Department of Mechanical & Aerospace Engineering. Email:
johnc@buffalo.edu. Fellow AIAA.

†Emeritus Engineer, Attitude Control Systems Engineering Branch. Email: Landis.Markley@nasa.gov. Fellow AIAA.

1 of 24

American Institute of Aeronautics and Astronautics



stability [8]. These gyros do not directly measure angular rate, but rather accumulate angular displacements
by integrating the feedbacks required to null internal gyro motions [9]. The earliest RIGs were floating type
that had a capability of achieving a drift performance of around 0.01 deg/hour [10]. They also exhibit angle
output white noise, also known as readout noise or electronic noise, in addition to the usual white noise asso-
ciated with standard gyros [6]. Some modern-day RIGs have been developed using micro-electro-mechanical
systems (MEMS) devices. One MEMS-based RIG uses a standing wave free to rotate under the effect of
Coriolis forces [8]. Another MEMS-based RIG uses a magnetic field to couple mechanical resonators that
can be separated by long distances compared to coulombic/electrostatic coupling [11].

The most common attitude estimator is based on the Kalman filter. For example, the Kalman filter
has been used on numerous spacecraft as the main algorithm to determine attitude and angular rates [1].
Gyros that read angular rates can easily be put into the Kalman filter framework [12]. However, this
is not straightforward with RIGs. Readout noise may be large in some RIGs, which causes estimates to
degrade. Therefore, this noise must be properly accounted for in the filter design. A recent reference shows
a steady-state Kalman filter formulation using spacecraft attitude sensors coupled with RIGs and a state
vector containing the attitude and RIG biases [13]. However, as shown in this paper, that approach ignores
correlations which may overestimate the contributions of the RIG output noise to the angle variance.

An analytic steady-state solution of the expected performance of the Kalman filter using RIGs has been
found for a single-axis case [14]. That work shows that when the readout noise is zero, then the expected
performance is identical the single-axis solution for gyros that read angular rates [15]. The purpose of the
present work is to extend the RIG analysis to the three-axis case. This involves an augmentation of the
standard gyro model state-vector in order to use the angle outputs of the RIGs in dynamic-model replacement
mode. The attitude parameterization here is based on the quaternion [16] in a multiplicative extended
Kalman filter framework [7, 12]. A reduced-order filter is also derived that ignores the aforementioned
correlations. This form is different from the previously developed steady-state filter using the attitude
matrix for the attitude parameterization [13]. Simulation results are shown to assess the attitude estimation
accuracy, and are also compared with the analytic single-axis solutions.

The content of this paper is organized as follows. First, the attitude kinematics and sensor models are
reviewed. This is followed by a revisit of single-axis analysis that shows the effects of ignoring correlations
for the reduced-order state formulation. Then, the equations for the three-axis attitude estimation using
RIGs are derived. Both the augmented and reduced-order forms are shown. Finally, simulation results using
a star tracker and RIGs for spacecraft attitude estimation are shown.

Attitude Kinematics and Sensor Models

This section presents a brief review of the attitude kinematics equation of motion using quaternions, and of

attitude-vector and RIG sensor models. The quaternion is defined by q ,
[

̺T q4
]T

, with ̺ , [q1 q2 q3]
T
=

ê sin(ϑ/2) and q4 = cos(ϑ/2), where ê is the axis of rotation and ϑ is the angle of rotation [16]. Since a
four-dimensional vector is used to describe three rotational degrees of freedom, the quaternion components
cannot be independent of each other. The quaternion satisfies a single constraint given by qTq = 1. The
attitude matrix is related to the quaternion by

A(q) = ΞT (q)Ψ(q) (1)

with

Ξ(q) ,

[

q4I3 + [̺×]

−̺T

]

(2a)

Ψ(q) ,

[

q4I3 − [̺×]

−̺T

]

(2b)

where I3 is a 3 × 3 identity matrix, and [̺×], called the cross product matrix because a × b = [a×]b, is
defined as

[a×] ,







0 −a3 a2

a3 0 −a1
−a2 a1 0






(3)
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Successive rotations can be accomplished using quaternion multiplication. Here the convention is adopted for
which the quaternions are multiplied in the same order as the attitude matrix multiplication: A(q′)A(q) =
A(q′ ⊗ q) [12, 16]. The composition of the quaternions is bilinear, with

q′ ⊗ q =
[

Ψ(q′)
... q′

]

q =
[

Ξ(q)
... q

]

q′ (4)

The inverse quaternion is given by q−1 =
[

−̺T q4
]T

, and the quaternion kinematics equation is given by

q̇ =
1

2

[

ω

0

]

⊗ q ,
1

2
[ω⊗]q (5)

where ω is the 3× 1 angular rate vector.
Discrete-time unit-vector attitude observations for a single sensor are given by

b̃i = A(q)ri + υi (6)

where b̃i denotes the i
th 3× 1 measurement vector in the body frame, and ri is the i

th known 3× 1 reference
vector. The sensor error-vector υi is assumed to be zero-mean and approximately Gaussian, satisfying

E {υi} = 03 (7a)

Ri , E
{

υiυ
T
i

}

= σ2
[

I3 − (Ari)(Ari)
T
]

(7b)

where E{ } denotes expectation, and where 03 denotes a 3 × 1 vector of zeros. The measurement model
expressed by Eq. (7b), known as the QUEST measurement model [17–20], is quite accurate for small field-
of-view sensors and has been expanded for large fields-of-view [20]. Equation (7b) gives a rank-deficient R
matrix, which would appear to give rise to problems in an estimator such as the extended Kalman filter
(EKF) [21], so this paper uses the simpler, full-rank form

R = σ2I3 (8)

which has been shown to give equivalent results in this context [7, 17, 22]. A set of N vector measurements
can be concatenated to form the (3N × 1)-component vector

ỹk =













A(q)r1

A(q)r2
...

A(q)rN













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

+













υ1

υ2
...

υN













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

(9a)

Rk = blkdiag
[

σ2
1I3 σ2

2I3 . . . σ2
N I3

]

(9b)

where blkdiag denotes a block diagonal matrix.
The vehicle is assumed to be equipped with n RIGs, which accumulate an n-component vector ϕ of

angles modeled by [14]

ϕ̇ =Mω + β + ηv (10a)

β̇ = ηu (10b)

where β is an n-component vector of biases, and M is an n× 3 matrix containing nominal gyro alignments,
gyro misalignments, and scale factors. It is a general matrix, with the proviso that it must have rank three.
In the simplest case, there are three gyros and M is the 3× 3 identity matrix. The n-component vectors ηu
and ηv represent uncorrelated Gaussian white-noise processes satisfying

E{ηu(t)ηT
u (τ)} = Quδ(t− τ) (11a)

E{ηv(t)ηT
v (τ)} = Qvδ(t− τ) (11b)

where δ(t − τ) denotes the Dirac delta function, and where Qu and Qv are diagonal n× n spectral density
matrices. Measurements of ϕ are given by

ϕ̃ = ϕ+ ve (12)

where ve is a vector of n uncorrelated Gaussian gyro output measurement errors with diagonal covariance
Qe.
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Single-Axis Analysis

In the standard attitude estimation EKF [12] the state vector consists of the attitude and gyro biases. In
this section, the single-axis analysis is revisited to show the reason why an augmented state vector should be
employed when using RIGs in the EKF setting. The true single-axis attitude angle ϑ obeys the kinematic
equation

ϑ̇ = ω (13)

where ω is the true single-axis angular rate. The single-axis RIG model is given by

ϕ̇ = ω + β + ηv (14a)

β̇ = ηu (14b)

where the spectral densities of ηv and ηu are given by σ2
v and σ2

u, respectively. The state vector is given by

x = [ϑ β ϕ]T , and the corresponding estimate is given by x̂ = [ϑ̂ β̂ ϕ̂]T . Thus the three-component state
x obeys the discrete-time propagation equation

xk+1 =







1 0 0

0 1 0

0 δt 1






xk +







1

0

1







∫ tk+1

tk

ω(τ) dτ +







0

Nu(tk+1, tk)

Nv(tk+1, tk)






(15)

where δt , tk+1 − tk is not assumed to be infinitesimal, and the quantities Nu and Nv are defined by

Nu(tk+1, tk) =

∫ tk+1

tk

ηu(τ) dτ (16a)

Nv(tk+1, tk) =

∫ tk+1

tk

[ηv(τ) + (tk+1 − τ)ηu(τ)] dτ (16b)

Some computations from the Appendix have been used in deriving Eqs. (16).

The last line of Eq. (15) shows that the unknown quantity
∫ tk+1

tk
ω(τ) dτ is given by

∫ tk+1

tk

ω(τ) dτ = ϕk+1 −
[

0 δt 1
]

xk −Nv(tk+1, tk) (17)

The RIG measurement at the end of the propagation interval is modeled as

ϕ̃k+1 = ϕk+1 + ve (18)

where ve is a zero-mean Gaussian measurement noise with variance σ2
e . It is assumed that ηu, ηv, and ve

are uncorrelated. Substituting Eqs. (17) and (18) into Eq. (15) to eliminate unknown quantities gives [7]

xk+1 = Φ(δt)xk +







1

0

1






ϕ̃k+1 +







−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve






(19)

where

Φ(δt) =







1 −δt −1

0 1 0

0 0 0






(20)

The state estimate obeys

x̂k+1 = Φ(δt) x̂k +







1

0

1






ϕ̃k+1 (21)
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Defining the state error vector ∆x , x− x̂ leads to

∆xk+1 = Φ(δt)∆xk +







−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve






(22)

The error-covariance P , E{∆x∆xT } propagates according to

Pk+1 = Φ(δt)PkΦ
T (δt) +Q(δt) (23)

where the process noise covariance Q is the covariance of the second term on the right side of Eq. (22):

Q(δt) =







σ2
vδt+

1
3
σ2
uδt

3 + σ2
e − 1

2
σ2
uδt

2 σ2
e

− 1
2
σ2
uδt

2 σ2
uδt 0

σ2
e 0 σ2

e






(24)

The superscripts − and +, which are generally used to distinguish pre-update and post-update quantities, do
not appear in these equations because the dynamic model replacement mode effectively combines a dynamic
propagation and a gyro measurement update in a single step. These superscripts will make their appearance
when a discrete-time attitude measurement update is considered.

It is easy to show by mathematical induction that propagation by ℓ steps gives

Pk+ℓ = Φ(ℓδt)PkΦ
T (ℓδt) +Q(ℓδt) (25)

This equation has two interesting properties. The first is that it depends only on the total propagation time
ℓδt, not on ℓ and δt separately. The second is that the noise term σe does not accumulate, so the covariance
only depends on the output noise of the last readout.

Equation (19) obtains ϕ̂k from the state vector xk. Another approach is to assume that ϕ̂k = ϕ̃k, and
∆ϕk = vek , where vek is zero-mean Gaussian measurement noise with variance σ2

e independent of vek+1
,

which has simply been called ve up to this point. With these modifications, ϕk can be omitted from the
state vector, leaving a two-component (reduced) state vector xr = [ϑ β]T , and

x̂r
k+1 = Φ̃(δt)x̂r

k +

[

1

0

]

(ϕ̃k+1 − ϕ̃k) (26a)

∆xr
k+1 = Φ̃(δt)∆xr

k +

[

−Nv(tk+1, tk)− vek+1
+ vek

Nu(tk+1, tk)

]

(26b)

where

Φ̃(δt) =

[

1 −δt
0 1

]

(27)

This would seem to be an improvement, because it reduces the size of the state vector and covariance matrix.
It is somewhat ad hoc, though, because it is not completely clear what to use as a replacement for Eq. (19).
Another and more significant problem is that the measurement noises at times tk and tk+1 are correlated.

The reduced error-covariance follows

P r
k+1 = Φ̃(δt)P r

k Φ̃
T (δt) +Qr(δt) (28)

where Qr is the covariance of the second term on the right side of Eq. (26b):

Qr(δt) =

[

σ2
vδt+

1
3
σ2
uδt

3 + 2σ2
e − 1

2
σ2
uδt

2

− 1
2
σ2
uδt

2 σ2
uδt

]

(29)

Iterating this equation ℓ times gives

P r
k+ℓ = Φ̃(ℓδt)P r

k Φ̃
T (ℓδt) +

[

σ2
v(ℓδt) +

1
3
σ2
u(ℓδt)

3 + 2ℓσ2
e − 1

2
σ2
u(ℓδt)

2

− 1
2
σ2
u(ℓδt)

2 σ2
u(ℓδt)

]

(30)
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This shows that ignoring the correlations in the measurements greatly overestimates the contributions of
the RIG output noise to the angle variance. The upper left corner of Q(ℓδt) in Eq. (25) contains the
contribution σ2

e , while the upper left corner of the corresponding matrix in Eq. (30) contains the contribution
2ℓσ2

e . Correct handling of the correlations causes the successive measurement output errors to cancel out,
leaving only the last one. This provides the motivation for augmenting the state vector employed in the
standard attitude estimation EKF [12], which assumes direct measurements of the angular rate instead of
the RIG-type measurements that are assumed here.

Rate-Integrating Gyro-Based Kalman Filter

In this section, the RIG-based multiplicative extended Kalman filter (MEKF) is derived. First, the
propagation equations are derived, and then the update equations are shown.

Propagation Equations

The 4 + 2n-component “global” truth state vector is given by

xbig =







q

β

ϕ






(31)

where β is an n-component vector of gyro drift biases, and ϕ is the n-component vector of angles accumulated
internally by the RIGs. The components of the global state vector obey the following truth-dynamics
equations:

q̇ =
1

2
[ω⊗]q (32a)

β̇ = ηu (32b)

ϕ̇ =Mω + β + ηv (32c)

where ω is the true angular rate vector. Equation (32) is the generalization of Eqs. (13) and (14) to three
space dimensions and n gyros. Note that the angular rate vector does not appear as a component of the
state vector. The global state estimates obey the following dynamic equations:

˙̂q =
1

2
[ω̂⊗]q̂ (33a)

˙̂
β = 03 (33b)

˙̂ϕ =M ω̂ + β̂ (33c)

The finite-time propagation of these equations is

q̂k+1 = exp

(

1

2

[∫ tk+1

tk

ω̂(τ) dτ ⊗
])

q̂k (34a)

β̂k+1 = β̂k (34b)

ϕ̂k+1 = ϕ̂k +M

∫ tk+1

tk

ω̂(τ) dτ + β̂ δt (34c)

Equation (34a) requires the customary assumption that any change in the orientation of the rotation axis

over the time interval δt = tk+1 − tk is negligible. The quantity β̂ is written without a time argument
in Eq. (34c) and all the subsequent equations, because Eq. (33b) shows that it is constant between gyro
measurements.

The essence of using RIGs in dynamic-model replacement mode is to obtain the angular rates from the
gyros. Thus the integrated rates are regarded as the unknowns rather than ϕ̂k+1 in Eq. (34c), and this
equation is solved for these quantities to obtain

ψ̂k+1, k ,

∫ tk+1

tk

ω̂(τ) dτ =ML
(

ϕ̃k+1 − ϕ̂k − β̂ δt
)

(35)
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where ML is a left inverse of M , i.e. a matrix satisfying MLM = I3. This matrix will be discussed in detail
later.

Substituting Eq. (35) into Eq. (34a) leads to [7]

q̂k+1 = exp

(

1

2
[ψ̂k+1, k⊗]

)

q̂k

=

{

cos

(

ψ̂k+1, k

2

)

I4 + sin

(

ψ̂k+1, k

2

)

[êk+1, k⊗]

}

q̂k

(36)

where I4 is a 4× 4 identity matrix, and the rotation angle ψ̂k+1, k and rotation axis unit vector êk+1, k have
the explicit forms

ψ̂k+1, k = ‖MLϕ̂k+1 −MLϕ̂k −MLβ̂ δt‖ (37a)

êk+1, k =
[

MLϕ̂k+1 −MLϕ̂k −MLβ̂ δt
]

/ψ̂k+1, k (37b)

These forms are chosen to show that the attitude estimator does not need to know the n-component vectors β̂
and ϕ̂, but only the three-component vectorsMLβ̂ and MLϕ̂. Thus the effective state is the ten-component
vector

x =







q

MLβ

MLϕ






(38)

Equations (36) and (37) show that the quaternion propagation needs the quantities MLβ̂, MLϕ̂k, and

MLϕ̂k+1. The values of M
Lβ̂ and MLϕ̂k are retained from the previous update, which may be from a gyro

measurement or a measurement by some different sensor. The dynamic-model replacement mode for RIGs
sets MLϕ̂k+1 = MLϕ̃k+1, where ϕ̃k+1 is the vector of RIG outputs at time tk+1. This substitution makes
it unnecessary to propagate the estimates of the RIG accumulated angles, and it has the result that the
propagation of the state estimates is straightforward with the usual fixed-axis approximation for closed-form
quaternion propagation.

This is analogous to using the vector of rate gyro outputs, denoted by ω̃(t), to compute the rate estimate

ω̂(t) =ML[ω̃(t)− β̂] when rate gyros are used in dynamic-model replacement mode [12]. In this application,
the integral in Eq. (34a) is evaluated continuously in principle, but uses some kind of low-order hold of
discretely sampled rate gyro outputs in practice. The RIG propagation does not require any kind of hold,
because the RIGs actually perform the continuous integration of the components along their input axes of
the true body rates over the time interval δt.

The MEKF represents the attitude error in terms of a three-vector δϑ as [7, 12]

q = δq(δϑ) ⊗ q̂ (39)

so that a reduced, nine-component, “local” error-state vector can be used, which is given by

∆x =







δϑ

ML∆β

ML∆ϕ






(40)

where ∆β , β − β̂ and ∆ϕ , ϕ − ϕ̂. Note that the MEKF defines δϑ by Eq. (39), not as the difference
between a true value and an expectation. The components of ∆x obey the dynamic equations [7, 12]

δϑ̇ = −[ω̂×]δϑ+∆ω (41a)

ML∆β̇ =MLηu (41b)

ML∆ϕ̇ =ML(M∆ω +∆β + ηv) = ∆ω +ML∆β +MLηv (41c)

where ∆ω , ω − ω̂.
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Equation (41) can be written in matrix form as

∆ẋ = F ∆x+







I3

03×3

I3






∆ω +







03

MLηu

MLηv






(42)

where 03×3 is a 3× 3 matrix of zeros, and

F ,







−[ω̂×] 03×3 03×3

03×3 03×3 03×3

03×3 I3 03×3






(43)

If Φ(t, t0) is the solution of Φ̇(t, t0) = F Φ(t, t0) with initial condition Φ(t0, t0) = I9, then

∆xk+1 = Φ(tk+1, tk)∆xk +

∫ tk+1

tk

Φ(tk+1, τ)













I3

03×3

I3






∆ω(τ) +







03

MLηu(τ)

MLηv(τ)












dτ (44)

The state transition matrix Φ(tk+1, tk) is given by

Φ(tk+1, tk) =







Φϑϑ(tk+1, tk) 03×3 03×3

03×3 I3 03×3

03×3 δtI3 I3






(45)

where Φ̇ϑϑ(t, t0) = −[ω̂×]Φϑϑ(t, t0) with initial condition Φϑϑ(t0, t0) = I3. Assuming again that any motion
of the rotation axis over δt is negligible gives [7]

Φϑϑ(tk+1, tk) = I3 − sin(ψ̂k+1, k)[êk+1, k×] + [1− cos(ψ̂k+1, k)][êk+1, k×]2 (46)

with ψ̂k+1, k and êk+1, k given by Eq. (37). Substituting Eq. (45) into Eq. (44) yields

∆xk+1 = Φ(tk+1, tk)∆xk +

∫ tk+1

tk







Φϑϑ(tk+1, τ)

03×3

I3






∆ω(τ) dτ +







03

MLNu(tk+1, tk)

MLNv(tk+1, tk)






(47)

where

Nu(tk+1, tk) =

∫ tk+1

tk

ηu(τ) dτ (48a)

Nv(tk+1, tk) =

∫ tk+1

tk

[ηv(τ) + (tk+1 − τ)ηu(τ)] dτ (48b)

The bottom three rows of Eq. (47) give

∫ tk+1

tk

∆ω(τ) dτ =
[

03×3 03×3 I3

]

∆xk+1 −
[

03×3 δtI3 I3

]

∆xk −MLNv(tk+1, tk) (49)

This equation follows directly from Eqs. (33c), (34c), and (35), and the definitions of ∆β, ∆ϕ, ∆ω, and Nv.
It is not possible to simply substitute this into Eq. (47) as was done in deriving Eq. (19), because the first

three rows of Eq. (47) contain the integral
∫ tk+1

tk
Φϑϑ(tk+1, τ)∆ω(τ) dτ . Accomplishing this substitution

requires the approximation:

∫ tk+1

tk

Φϑϑ(tk+1, τ)∆ω(τ) dτ ≈ Φ̄(tk+1, tk)

∫ tk+1

tk

∆ω(τ) dτ (50)
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where Φ̄(tk+1, tk) represents some kind of average of Φϑϑ(tk+1, τ) over the integration span. The following
form is chosen for Φ̄(tk+1, tk):

Φ̄(tk+1, tk) =
1

δt

∫ tk+1

tk

Φϑϑ(tk+1, τ) dτ (51)

This form has two advantages. The first is that if ∆ω is constant over the integration span then it provides an
exact representation

∫ tk+1

tk
Φϑϑ(tk+1, τ)∆ω(τ) dτ . It is not expected that ∆ω is constant over the integration

span, and the fact that this quantity is unknown is what requires the use of Eq. (49), but the choice for
Φ̄(tk+1, tk) at least assures that any constant part of ∆ω is correctly accounted for. The second advantage
of this choice for Φ̄(tk+1, tk) is that it leads to an estimator that most closely resembles the conventional
MEKF with rate gyros in model replacement mode, as will be seen later. The approximation that ω̂ is
constant in both magnitude and direction over the integration span allows the integral to be evaluated in
closed-form to obtain

Φ̄(tk+1, tk) = I3 −
1− cos(ψ̂k+1, k)

ψ̂k+1, k

[êk+1, k×] +
ψ̂k+1, k − sin(ψ̂k+1, k)

ψ̂k+1, k

[êk+1, k×]2 (52)

Some special care must be taken to avoid division by zero if the rotation angle is zero.
Although approximations of the kind used here for the quaternion and covariance propagation are often

made simply for computational convenience, something like Eq. (50) is absolutely necessary in this RIG
formulation, because the RIGs do not know that they are in a rotating frame; they just integrate the
components of the angular rates on their input axes without knowing anything about the rates on the cross
axes or Eulerian kinematics.

Using the approximation of Eq. (50) and then substituting Eq. (49) into Eq. (47) give

∆xk+1 ≈ Φ(tk+1, tk)∆xk +







Φ̄(tk+1, tk)

03×3

I3







∫ tk+1

tk

∆ω(τ) dτ +







03

MLNu(tk+1, tk)

MLNv(tk+1, tk)







= Φ(tk+1, tk)∆xk +







Φ̄(tk+1, tk)

03×3

I3







{[

03×3 03×3 I3

]

∆xk+1

−
[

03×3 δtI3 I3

]

∆xk −MLNv(tk+1, tk)
}

+







03

MLNu(tk+1, tk)

MLNv(tk+1, tk)







(53)

which gives






I3 03×3 −Φ̄(tk+1, tk)

03×3 I3 03×3

03×3 03×3 03×3






∆xk+1 =







Φϑϑ(tk+1, tk) −Φ̄(tk+1, tk) δt −Φ̄(tk+1, tk)

03×3 I3 03×3

03×3 03×3 03×3






∆xk

+







−Φ̄(tk+1, tk)M
LNv(tk+1, tk)

MLNu(tk+1, tk)

03







(54)

The bottom three rows of this equation give 03 = 03, so they contain no information. This is not surprising
because they have been used to substitute the integral of the angular rate vector into Eq. (47). The middle
three rows give a perfectly reasonable equation for ∆βk+1. The top three rows give

δϑk+1 − Φ̄(tk+1, tk)M
L∆ϕk+1 =

[

Φϑϑ(tk+1, tk) −Φ̄(tk+1, tk) δt −Φ̄(tk+1, tk)
]

∆xk

− Φ̄(tk+1, tk)M
LNv(tk+1, tk)

(55)

This has expectation

δϑ̂k+1 = Φϑϑ(tk+1, tk)δϑ̂k (56)
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because ∆β, ∆ϕ, and Nv are all defined to have zero mean. The MEKF has reset δϑ̂ to zero after the last
measurement update, so Eq. (56) says that it remains zero through all the following RIG propagation steps.
This obviates the need to propagate this expectation, as is always assumed in the MEKF, and it also means
that δϑ really is an error. Equation (55) provides an equation for δϑk+1 − Φ̄(tk+1, tk)M

L∆ϕk+1, but not
for δϑk+1 and ∆ϕk+1 separately. More information is clearly needed, which is obtained by recalling that
the dynamic-model replacement mode sets ϕ̂k+1 = ϕ̃k+1. It follows from Eq. (12) that

ML∆ϕk+1 =ML [ϕk+1 − ϕ̂k+1] =ML [ϕk+1 − ϕ̃k+1] = −MLve (57)

This is used to replace the information-free bottom three rows of Eq. (54), and is also substituted into the
top three rows, giving

∆xk+1 =







Φϑϑ(tk+1, tk) −Φ̄(tk+1, tk) δt −Φ̄(tk+1, tk)

03×3 I3 03×3

03×3 03×3 03×3






∆xk

+ blkdiag
([

Φ̄(tk+1, tk)M
L ML ML

])







−Nv(tk+1, tk)− ve

Nu(tk+1, tk)

−ve







, Φeff(tk+1, tk)∆xk +G(tk+1, tk)Nx(δt)

(58)

where G(tk+1, tk) is the 9× 9 block diagonal matrix and Nx(δt) is the nine-component process noise vector.
Equation (58) is the three-axis equivalent of Eq. (22).

Note that the quantity Nv(tk+1, tk), which contains the gyro process noise contributions to the attitude
propagation errors, has moved from the bottom three rows (the ML∆ϕ rows) of Eq. (47) to the top three
rows (the δϑ rows) in Eq. (58). This is characteristic of the dynamic-model replacement mode. This mode
takes the RIG data very seriously, possibly too seriously, believing that the only error in the RIG data is
the output noise ve. An estimator using rate gyros in the dynamic-model replacement mode has nothing
analogous to the ML∆ϕ rows, so it puts the gyro process noise in the only available place, the δϑ rows.
That estimator takes the gyro data equally seriously, if not more so.

The error-covariance propagates according to

Pk+1 = Φeff(tk+1, tk)Pk Φ
T
eff(tk+1, tk) +G(tk+1, tk)QG

T (tk+1, tk) (59)

The process noise covariance Q is given by

Q = E
{[

Nx(δt)NT
x (δt)

]}

=







Qvδt+
1
3
Quδt

3 +Qe − 1
2
Quδt

2 Qe

− 1
2
Quδt

2 Quδt 03×3

Qe 03×3 Qe






(60)

These equations are the three-axis equivalents of Eqs. (23) and (24). Using the notation Q̃e ,MLQe(M
L)T

and

P =







Pϑϑ PT
βϑ PT

ϕϑ

Pβϑ Pββ Pβϕ

Pϕϑ PT
βϕ Pϕϕ






=







P̃
PT
ϕϑ

Pβϕ

Pϕϑ PT
βϕ Pϕϕ






(61)

where

P̃ ,

[

Pϑϑ PT
βϑ

Pβϑ Pββ

]

(62)

Eq. (59) can be written as

Pk+1 =







P̃k+1
Φ̄(tk+1, tk) Q̃e

03×3

Q̃eΦ̄
T (tk+1, tk) 03×3 Q̃e






(63)

10 of 24

American Institute of Aeronautics and Astronautics



with
P̃k+1 = Φ̃(tk+1, tk)

[

P̃k +∆P̃ (tk+1, tk)
]

Φ̃T (tk+1, tk) + Q̃(tk+1, tk) (64)

where Φ̃(tk+1, tk) and Q̃(tk+1, tk) are the upper left 6 × 6 corners of the matrices Φeff(tk+1, tk) and
G(tk+1, tk)QG

T (tk+1, tk), respectively, and

∆P̃ (tk+1, tk) = Φ̃−1(tk+1, tk)

[

Φ̄(tk+1, tk)Pϕϕk
Φ̄T (tk+1, tk) 03×3

03×3 03×3

]

Φ̃−T (tk+1, tk)

−
[

PT
ϕϑk

Φ̄T (tk+1, tk) 03×3

Pβϕk
Φ̄T (tk+1, tk) 03×3

]

Φ̃−T (tk+1, tk)

− Φ̃−1(tk+1, tk)

[

Φ̄(tk+1, tk)Pϕϑk
Φ̄(tk+1, tk)P

T
βϕk

03×3 03×3

]

(65)

Equations (46) and (52), and [êk+1, k×]3 = −[êk+1, k×] show that Φϑϑ(tk+1, tk) is orthogonal and the
multiplication ΦT

ϑϑ(tk+1, tk)Φ̄(tk+1, tk) = Φ̄T (tk+1, tk), so

Φ̃−1(tk+1, tk) =

[

ΦT
ϑϑ(tk+1, tk) Φ̄T (tk+1, tk) δt

03×3 I3

]

(66)

Equation (65) can now be re-expressed as

∆P̃ (tk+1, tk) =

[

∆P̃ϑϑ(tk+1, tk) −Φ̄T (tk+1, tk)P
T
βϕk

−Pβϕk
Φ̄(tk+1, tk) 03×3

]

(67)

where

∆P̃ϑϑ(tk+1, tk) , Φ̄T (tk+1, tk)Pϕϕk
Φ̄(tk+1, tk)− PT

ϕϑk
Φ̄(tk+1, tk)− Φ̄T (tk+1, tk)Pϕϑk

(68)

Equations (63), (64), (67), and (68) are computationally less expensive than Eq. (59), and they also serve
better to show the relation between the RIG formulation and the conventional formulation.

Cancellation of Gyro Measurement Output Noise

The one-dimensional case shown previously has the property that the gyro measurement output noise does
not propagate forward in time, which is to say that the output noise added at one gyro propagation step
exactly cancels out in the next propagation step. This is reasonable because a measurement error in one
RIG output leads to an incremental angle error at that step but also to an incremental angle error of equal
magnitude but opposite sign at the next step. It is useful to see if this property holds in the three-dimensional
case. Consider two successive gyro propagation steps, from tk to tk+1 and from tk+1 to tk+2. Equation (63)
states that Pβϕk+1

= 03×3, Pϕϑk+1
= Q̃eΦ̄

T (tk+1, tk), and Pϕϕk+1
= Q̃e, so Eqs. (63), (65), and (67) give

Pk+2 =







P̃k+2
Φ̄(tk+2, tk+1) Q̃e

03×3

Q̃eΦ̄
T (tk+2, tk+1) 03×3 Q̃e






(69)

with
P̃k+2 = Φ̃(tk+2, tk+1)

[

P̃k+1 +∆P̃ (tk+2, tk+1)
]

Φ̃T (tk+2, tk+1) + Q̃(tk+2, tk+1) (70)

and

∆P̃ (tk+2, tk+1) =

[

∆P̃ϑϑ(tk+2, tk+1) 03×3

03×3 03×3

]

(71)

where

∆P̃ϑϑ(tk+2, tk+1) =
[

Φ̄T (tk+2, tk+1)− Φ̄(tk+1, tk)
]

Q̃e

[

Φ̄(tk+2, tk+1)− Φ̄T (tk+1, tk)
]

− Φ̄(tk+1, tk) Q̃e Φ̄
T (tk+1, tk)

(72)
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The Q̃e terms in Eq. (69) and the Q̃(tk+2, tk+1) term in Eq. (70) contain RIG output noise only from tk+2,
so RIG output noise from tk+1 can find its way into Pk+2 only through P̃k+1 and ∆P̃ (tk+2, tk+1). The
only contribution to P̃k+1 from RIG output noise at tk+1 is a term Φ̄(tk+1, tk) Q̃e Φ̄

T (tk+1, tk) in the upper
left 3 × 3 corner coming from the same corner of Q̃(tk+1, tk), and this term is exactly cancelled by the
−Φ̄(tk+1, tk) Q̃e Φ̄

T (tk+1, tk) term in ∆P̃ϑϑ(tk+2, tk+1). Thus the contribution to Pk+2 from RIG output
noise at tk+1 vanishes if and only if Φ̄T (tk+2, tk+1) = Φ̄(tk+1, tk). Examination of Eq. (52) shows that this

cancellation requires that êk+2, k+1 = êk+1, k , ê and either ψ̂k+2, k+1 = −ψ̂k+1, k or ψ̂k+1, k = 2πn and

ψ̂k+2, k+1 = 2πm, where n and m are nonzero integers. The matrices [ψ̂k+1, k⊗] and [ψ̂k+2, k+1⊗] commute
in both of these cases, so Eq. (36) gives

q̂k+2 = exp

(

1

2

[(

ψ̂k+2, k+1 + ψ̂k+1, k

)

⊗
]

)

q̂k (73)

The case 03 = ψ̂k+2, k+1+ψ̂k+1, k =
∫ tk+1

tk
ω̂(τ) dτ , which gives q̂k+2 = q̂k, includes the special case that ω̂ =

03 over the entire span from tk to tk+2. It is not surprising that the output error does not propagate forward
if ω̂ = 03, because the estimator has no coupling between the coordinate axes in this case, so the three-
dimensional case looks like three independent single-axis cases for which it is known that the cancellation
is exact. The less likely case that ψ̂k+1, k = 2πnê and ψ̂k+2, k+1 = 2πmê gives q̂k+2 = (−1)n+mq̂k, so the
attitude matrices at tk and tk+2 are identical in all the three-axis cases for which the cancellation is exact.

If êk+2, k+1 = êk+1, k but ψ̂k+1, k and ψ̂k+2, k+1 do not satisfy either of the conditions for cancellation
specified above Eq. (73), the contribution to Pk+2 from RIG output noise at tk+1 does not vanish because
Φ̄T (tk+2, tk+1) 6= Φ̄(tk+1, tk). The lack of cancellation in this case is somewhat surprising, because the

matrices [ψ̂k+1, k⊗] and [ψ̂k+2, k+1⊗] commute, Eq. (73) holds, and Eq. (37) gives

q̂k+2 = exp

(

1

2

[

ML(ϕ̂k+2 − ϕ̂k − 2β̂ δt)⊗
]

)

q̂k (74)

with the RIG output at time tk+1 canceling out. Closer examination of Φ̄T (tk+2, tk+1)− Φ̄(tk+1, tk) reveals
two interesting properties, though. The first is that the contribution of RIG output noise at tk+1 to Pϑϑk+2

,
Pβϑ

k+2
, and Pββ

k+2
in this case is entirely in the plane perpendicular to ê. This is consistent with the

observation that if ω̂ is always along a fixed axis, this axis decouples dynamically from the other two axes,
so estimation of the rotation about this axis is just like the one-dimensional case for which RIG output noise
does not propagate forward in time. The dynamics of the two axes perpendicular to ω̂ are coupled by the
rotation, though; and the fact that the contribution of RIG output noise at tk+1 to the covariance at tk+2 is
in the plane perpendicular to ω̂ may help to explain why it vanishes only if the attitude matrices at tk and
tk+2 are identical. The second interesting property is that the contribution of RIG output noise at tk+1 to
the covariance at tk+2 is of order (ψ̂k+2, k+1 + ψ̂k+1, k)

2 for small rotations.
Cancellation is not exact in the general case, but there is near-cancellation for small rotations, and the

fundamental function of the additional three components of the state vector in the RIG formulation is to
ensure this cancellation or near-cancellation.

Angular Rate Estimate

As was observed below Eq (32), the angular rate is not part of the state vector of this estimator. The rate
is an important quantity of interest, however, and is typically used in a controller. Rate-integrating gyros
do not output an instantaneous rate measurement, but they can provide an estimate of the average rate
between times tk and tk+1. Equation (35) with ϕ̂k+1 = ϕ̃k+1, gives

ω̂k+1,k =
1

δt
ML

(

ϕ̃k+1 − ϕ̂k − β̂ δt
)

(75)

Equation (32) gives the true average rate over this time interval as

ωk+1,k =
1

δt

∫ tk+1

tk

ω(τ) dτ =
1

δt
ML

{

ϕk+1 −ϕk −
∫ tk+1

tk

[β(τ) + ηv(τ)] dτ

}

=
1

δt
ML [ϕk+1 −ϕk − βkδt−Nv(tk+1, tk)]

(76)
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The error in the angular rate estimate is

∆ωk+1,k = ωk+1,k − ω̂k+1,k

=
1

δt
ML [−ve −∆ϕk −∆βkδt−Nv(tk+1, tk)]

(77)

The covariance of the angular rate error, Pωωk+1
, E{∆ωk+1,k ∆ω

T
k+1,k}, is given by

Pωωk+1
=

1

δt2

(

Q̃e + Pϕϕk

)

+
1

δt

(

Q̃v + Pϕβk
+ PT

ϕβk

)

+ Pββk
+

1

3
Q̃uδt (78)

where Q̃u ,MLQu(M
L)T and Q̃v ,MLQv(M

L)T . The Appendix contains details useful in this derivation.
Equation (63) gives some simplifications if Pk is the covariance immediately following a gyro propagation.

Gyro Output Matrix Inverse

The left inverse ML is now discussed. This is the usual inverse if there are only three gyros, leaving no
opportunity to assign weights to the gyro measurements. With more than three gyros, the left inverse can
be written as

ML = (MTW M)−1MTW (79)

where the symmetric positive semi-definite weight matrix W must be chosen so that the inverse in Eq. (79)
exists. The simplest choice isW = In, but it might be better to choose gyro weights inversely proportional to

their error variances. The form of the upper left 3×3 corner ofQ suggests thatW =
(

Qvδt+
1
3
Quδt

3 +Qe

)

−1

be chosen. The components of the diagonal matrices Qv, Qu, and Qe can be different on the different axes,
but the more common case is that all the gyros have identical noise characteristics, so Qv = σ2

vIn, Qu = σ2
uIn,

and Qe = σ2
eIn. In this case, the above choice for W makes it a multiple of the identity matrix, and it is

clear from Eq. (79) that choosing W to be any multiple of the identity is equivalent to choosing it to be
equal to the identity matrix. If all the gyros have identical noise characteristics, then, there is no reason to
choose W to be anything other than the identity matrix.

Measurement Update Equations

The measurement update equations generally follow the the conventional MEKF [7]. This section presents
only the special features of the RIG-based estimator with the m-component attitude measurement model of
Eq. (9). The detailed equations can be found in Table 1.

The state estimate and covariance prior to the measurement update are denoted by

x̂− =







q̂−

MLβ̂−

MLϕ̂−






(80)

and P̂− respectively. These can follow either a gyro propagation or an attitude measurement update with
no intervening propagation step. The sensitivity matrix for the measurement vector of Eq. (9) is

Hk =
[

H̃k 03N×3 03N×3

]

(81)

with [7, 12]

H̃k ,









[

A(q̂−

k )r1×
]

...
[

A(q̂−

k )rN×
]









(82)

The Kalman gain and the covariance update are given by

Kk = P−

k H
T
k

(

HkP
−

k H
T
k +Rk

)−1
= P−

k

[

H̃k 03N×6

]T (

H̃kP
−

ϑϑk
H̃T

k +Rk

)

−1

(83a)

P+
k =

(

I9 −Kk

[

H̃k 03N×6

])

P−

k (83b)

where the superscript + indicates a post-update quantity.
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Gyro Measurement Output Noise-Free Case

This subsection compares the filter in the limiting case of negligibly small gyro measurement output noise
with the conventional MEKF [7]. When Q̃e = 03×3, the rightmost three columns and the bottom three rows
of the 9× 9 covariance matrix Pk are identically zero, as is the matrix ∆P̃ (tk+1, tk). The matrix Φ̃(tk+1, tk)
is the same as the matrix Φk in the traditional MEKF, so the covariance propagation is the same as the
traditional MEKF except for a different computation of Q. For comparison with previous analysis, assume
that there are three gyros with identical noise characteristics, so M = I3, Q̃v = σ2

vI3, and Q̃v = σ2
uI3.

The conventional MEKF, with notation changed to agree with this paper, gives the process noise covariance
matrix as [7]

Qk =

[

Q11k Q12k

QT
12k

Q22k

]

(84)

with
Q22k = (σ2

uδt)I3 (85)

Q12k = −1

2
σ2
uδt

2

{

I3 − 2
ψ̂k+1, k − sin(ψ̂k+1, k)

ψ̂2
k+1, k

[êk+1, k×]

+
ψ̂2
k+1, k + 2 cos(ψ̂k+1, k)− 2

ψ̂2
k+1, k

[êk+1, k×]2

}

≈ −1

2
σ2
uδt

2

{

I3 −
1

3
[ψ̂k+1, k×] +

1

12
[ψ̂k+1, k×]2

}

(86)

and

Q11k = (σ2
vδt)I3 +

1

3
σ2
uδt

3

{

I3 −
6ψ̂k+1, k − 6 sin(ψ̂k+1, k)− ψ̂3

k+1, k

ψ̂3
k+1, k

[êk+1, k×]2

}

≈ (σ2
vδt)I3 +

1

3
σ2
uδt

3

{

I3 +
1

20
[ψ̂k+1, k×]2

}

(87)

The approximations are the lowest-order terms in ψ̂k+1, k.
The corresponding matrix in the RIG case using Φ̄(tk+1, tk) is

Q̃k+1, k =

[

Q̃11 Q̃12

Q̃T
12 Q̃22

]

(88)

with
Q̃22 = (σ2

uδt)I3 (89)

Q̃12 = −1

2
(σ2

uδt
2)Φ̄(t1, t0)

= −1

2
σ2
uδt

2

{

I3 −
1− cos(ψ̂k+1, k)

ψ̂k+1, k

[êk+1, k×] +
ψ̂k+1, k − sin(ψ̂k+1, k)

ψ̂k+1, k

[êk+1, k×]2

}

≈ −1

2
σ2
uδt

2

{

I3 −
1

2
[ψ̂k+1, k×] +

1

6
[ψ̂k+1, k×]2

}

(90)

and

Q̃11 =

(

σ2
vδt+

1

3
σ2
uδt

3

)

Φ̄(t1, t0)Φ̄
T (t1, t0)

=

(

σ2
vδt+

1

3
σ2
uδt

3

)

{

I3 +
ψ̂2
k+1, k + 2 cos(ψ̂k+1, k)− 2

ψ̂2
k+1, k

[êk+1, k×]2

}

≈
(

σ2
vδt+

1

3
σ2
uδt

3

){

I3 +
1

12
[ψ̂k+1, k×]2

}

(91)
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The process noise covariance is the same in lowest (zeroth) order in ψ̂k+1, k but Q11 and Q12 differ in higher
orders. The zeroth order approximation is generally adequate in practice [7]. The similarity of the two

approaches is misleading, because they compute the incremental angle ψ̂k+1, k ,
∫ tk+1

tk
ω̂(τ) dτ differently, in

principle. In the conventional method, the rate gyros are assumed to output a continuous rate ω̂(t), which

is integrated by the estimator. The RIG estimator, in contrast, computes ψ̂k+1, k as a finite difference of ϕ̃k

values output by the RIGs at discrete times.

Reduced Rate-Integrating Gyro-Based Kalman Filter

This section presents the reduced-order RIG-based MEKF. In this case the integral of the angular rate
is estimated using

ψ̂k+1, k ,

∫ tk+1

tk

ω̂(τ) dτ =ML
(

ϕ̃k+1 − ϕ̃k − β̂ δt
)

(92)

The quantity ϕ can now be removed from the state vector, giving the following seven-component “global”
truth state vector and six-component “local” error-state vector, respectively:

xr =

[

q

MLβ

]

, ∆xr =

[

δϑ

ML∆β

]

(93)

The true rate is given by Eq. (32c) using a finite-difference approximation for ϕ̇

ω =ML

(

ϕk+1 −ϕk

δt
− β − ηv

)

(94)

This gives the attitude rate error as

∆ω =ML

(−vek+1
+ vek

δt
−∆β − ηv

)

(95)

Inserting this into the error dynamics of Eqs. (41a) and (41b) gives

∆ẋr =

[

−[ω̂×] −I3
03×3 03×3

]

∆xr +

[

ML
(

−vek+1
+ vek

)

/δt−MLηv

MLηu

]

(96)

The same logic as that leading to Eq. (44) gives

∆xr
k+1 = Φ̃(tk+1, tk)∆xr

k +

∫ tk+1

tk

Φ̃(tk+1, τ)

[

−MLηv(τ)

MLηu(τ)

]

dτ

+

[

Φ̄(tk+1, tk)M
L
(

−vek+1
+ vek

)

03

] (97)

The covariance of the reduced state propagates by

P r
k+1 = Φ̃(tk+1, tk)P

r
k Φ̃

T (tk+1, tk) +Qr (98)

The process noise covariance Qr is the three-axis equivalent of Eq. (29). It is the sum of independent
contributions from the second and third terms on the right side of Eq. (97). The second term gives the same
process noise covariance matrix as the conventional rate gyro-based estimator, which is given by Eqs. (84)–
(87) if M = I3 and the gyros have identical noise characteristics. The third term gives an additional
contribution of 2Φ̄(tk+1, tk)Q̃eΦ̄

T (tk+1, tk) to Q11k .
The angular rate estimate is given by

ω̂r
k+1,k =

1

δt
ML

(

ϕ̃k+1 − ϕ̃k − β̂k δt
)

(99)

The error in this estimate is

∆ωr
k+1,k =

1

δt
ML

[

−vek+1
+ vek −∆βkδt−Nv(tk+1, tk)

]

(100)
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Table 1. Rate-Integrating Gyro Extended Kalman Filter

Initialize

x̂−

0 ,







q̂−

0

β̂−

0

ϕ̂−

0






=







q̂0

β̂0

ϕ̂0







P−

0 = P0

Gain
Kk = P−

k

[

H̃k(x̂
−

k ) 03N×6

]T [

H̃k(x̂
−

k )P
−

ϑϑk
H̃T

k (x̂
−

k ) +Rk

]

−1

H̃k(x̂
−

k ) =









[

A(q̂−

k )r1×
]

...
[

A(q̂−

k )rN×
]









Update P+
k =

(

I9 −Kk

[

H̃k(x̂
−

k ) 03N×6

])

P−

k

∆x̂+
k ,







δϑ̂+
k

∆β̂+
k

∆ϕ̂+
k






= Kk

[

ỹk − hk(x̂
−

k )
]

hk(x̂
−

k ) =









A(q̂−

k )r1
...

A(q̂−

k )rN









q̂∗ = q̂−

k +
1

2
Ξ(q̂−

k )δϑ̂
+
k

q̂+
k = q̂∗/‖q̂∗‖

MLβ̂+
k =MLβ̂−

k +∆β̂+
k

MLϕ̂+
k =MLϕ̂−

k +∆ϕ̂+
k

Propagation ψ̂k+1, k =MLϕ̃k+1 −MLϕ̂k −MLβ̂kδt

q̂k+1 = exp
(

1
2
[ψ̂k+1, k⊗]

)

q̂k

MLβ̂k+1 =MLβ̂k

MLϕ̂k+1 =MLϕ̃k+1

Pk+1 = Φeff(tk+1, tk)Pk Φ
T
eff(tk+1, tk) +G(tk+1, tk)QG

T (tk+1, tk)

and its error-covariance is given by

P r
ωωk+1

=
2

δt2
Q̃e +

1

δt
Q̃v + P r

ββk
+

1

3
Q̃uδt (101)

This is simpler than Eq. (78), but the two expressions take the same form if Pk satisfies Eq. (63).
The attitude measurement update equations are the same as those for the full order RIG-based Kalman

filter, except for obvious changes due to the reduced dimensionality of the state vector.
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Table 2. Reduced Rate-Integrating Gyro Extended Kalman Filter

Initialize
x̂r−
0 ,

[

q̂−

0

β̂−

0

]

=

[

q̂0

β̂0

]

P r−
0 = P r

0

Gain
Kr

k = P r−
k

[

H̃k(x̂
r−
k ) 03N×3

]T [

H̃k(x̂
r−
k )P r−

ϑϑk
H̃T

k (x̂
r−
k ) +Rk

]

−1

H̃k(x̂
r−
k ) =









[

A(q̂−

k )r1×
]

...
[

A(q̂−

k )rN×
]









Update P r+
k =

(

I6 −Kr
k

[

H̃k(x̂
r−
k ) 03N×3

])

P r−
k

∆x̂r+
k ,

[

δϑ̂+
k

∆β̂+
k

]

= Kr
k

[

ỹk − hk(x̂
r−
k )
]

hk(x̂
r−
rk ) =









A(q̂−

k )r1
...

A(q̂−

k )rN









q̂∗ = q̂−

k +
1

2
Ξ(q̂−

k )δϑ̂
+
k

q̂+
k = q̂∗/‖q̂∗‖

MLβ̂+
k =MLβ̂−

k +∆β̂+
k

Propagation ψ̂k+1, k =MLϕ̃k+1 −MLϕ̃k −MLβ̂kδt

q̂k+1 = exp
(

1
2
[ψ̂k+1, k⊗]

)

q̂k

MLβ̂k+1 =MLβ̂k

P r
k+1 = Φ̃(tk+1, tk)P

r
k Φ̃T (tk+1, tk) +Qr

Algorithm Summaries

Table 1 shows the RIG MEKF algorithm for attitude estimation. First, the estimated quaternion, bias
vector, and RIG vectors, as well as the error-covariance are initialized. The table assumes that an update
occurs before any gyro propagation, but this assumption is not essential. The Kalman gain is computed,
and the state vector and covariance matrix are updated. Note that an explicit reset operation is not needed
because δϑ̂−

k is always zero in this formulation. The updated estimates and error-covariance are then
propagated. It is important to realize that the sampling rate of the RIG measurement is usually higher than
the sampling rate of the attitude measurement, so there may be many propagation steps between successive
attitude measurements. For this reason, superscripts − or + are not shown in the propagation equations. A
series of propagations begins with x̂+ and P+ from the previous update and ends with x̂− and P− for the
following update. Table 2 shows the algorithm for the reduced-order RIG MEKF for attitude estimation.
The steps are the same as the full-order RIG MEKF in Table 1.
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Figure 1. Availability of Stars

Star Tracker Simulation

This section shows the performance of the RIG MEKF using simulated RIG and star tracker data
to estimate the attitude of an Earth-pointing spacecraft in an equatorial 350 km circular orbit, which is
equivalent to a 91.5 minute orbital period. The spacecraft’s z-axis is pointed in the nadir direction, the
y-axis is pointed opposite to the orbit momentum vector, and the x-axis is pointed in the orbit velocity
direction. The true angular velocity is given by ω(t) = [0 − 1.11445× 10−3 0]T rad/sec.

The star tracker is not assumed to output a quaternion, but to return unit vector observations in the
body frame of individual stars that are simulated by

b̃i =
1

√

1 + α̃2
i + β̃2

i







−α̃i

−β̃i
1






(102)

where α̃i and β̃i are focal plane measurements. Their respective true quantities are denoted by αi and βi.
Defining the 2× 1 vector γi , [αi βi]

T , then the measurement model follows

γ̃i = γi + vi (103)

where vi is a zero-mean Gaussian noise process. A frequently used covariance for vi is given by [17]

RFOCAL
i =

σ2

1 + d (α2
i + β2

i )







(1 + dα2
i )

2 (dαiβi)
2

(dαiβi)
2 (1 + d β2

i )
2






(104)

where d is set to 1 and σ = (0.005/3)× (π/180) rad. Note that Eqs. (102)–(104) are used to generate the
simulated measurements, while Eq. (8) is used in the RIG MEKF, which approximates the actual covariance.
The star tracker can sense up to 10 stars in a 6◦ × 6◦ field-of-view, and the star catalog contains stars up to
a magnitude of 6.0, the assumed star tracker sensitivity limit. The star tracker’s boresight is defined by its
corresponding sensor z-axis, which is assumed to be along the negative spacecraft body z-axis. Star images
are taken at 1-second intervals. A plot of the number of available stars is shown in Figure 1.

The spacecraft is assumed to be equipped with three RIGs with their boresights along the spacecraft body
axes. The noise parameters for each axis of the RIG measurements are equal with Qe = σ2

eI3×3, Qu = σ2
uI3×3,

and Qv = σ2
vI3×3. The specific values for σe, σu, and σv are σe = 5×10−6 rad, σu =

√
10×10−10 rad/sec3/2,

and σv =
√
10×10−7 rad/sec1/2. The initial bias for each axis is given by 0.1 deg/hr. The RIG measurements

are output every 0.1 seconds, i.e. 10 times faster than the star tracker measurements. The initial attitude
estimate is given by its true value. The initial bias estimates are all set to zero, and the initial RIG angle
estimates are set to their measured values. The initial error-covariance for the attitude-estimate matrix is
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Figure 2. RIG MEKF Errors and 3σ Bounds

isotropic with a 3σ value of 1 deg. The error-covariance for the bias-estimate matrix is isotropic with a 3σ
value of 1 deg/hr, and the error-covariance for the RIG-estimate matrix is isotropic with a variance of σ2

e .
The results in Figure 2 show good filter convergence, consistent with results obtained using rate gyros.

All errors are within their respective 3σ bounds. Figure 2(a) shows how the attitude errors slightly increase
at times when fewer stars are available, which is expected. The attitude 3σ bounds for the off-boresight axes
at steady-state are about 16 µrad. The single-axis case gives an analytical steady-state 3σ bound of about
17 µrad [7, 14]. The bias 3σ bounds for the off-boresight axes at steady-state are about 6.4 × 10−3 deg/hr.
The analytic steady-state single-axis 3σ estimate is about 6.5× 10−3 deg/hr. The RIG angle 3σ bounds for
the off-boresight axes at steady-state are about 1.5 × 10−5 rad. The steady-state single-axis analysis gives
a 3σ bound of about 1.5 × 10−5 rad. This shows how the steady-state single-axis results can be used to
accurately assess the performance of the full three-axis case.

Results of the reduced-order RIG MEKF using the same simulation parameters are shown in Figure 3.
The attitude errors in Figure 3(a) exhibit much more fluctuation due to the number of stars than the errors
shown in Figure 2(a). The single-axis case gives a 3σ bound of about 77 µrad, which is slightly larger than
the average errors seen in Figure 3(a). The bias 3σ bounds for the off-boresight axes at steady-state are about
0.26 deg/hr. The single-axis case gives a 3σ bound of about 0.27 deg/hr. Good filter convergence is again
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Figure 3. Reduced-Order RIG MEKF Errors and 3σ Bounds

seen. All errors are within their respective 3σ bounds, which seems to show that although correlations are
ignored in the reduced-order filter, the estimates themselves are at least consistent. However, the estimate
errors are much larger using the reduced-order filter than the full-order filter. This is consistent with the
single-axis analysis, which shows that ignoring the correlations in the measurements greatly overestimates
the contributions of the RIG output noise.

Figure 4 shows the results of a third simulation using the standard MEKF filter that does not take the
σe term into account [7,12]. The RIG measurements are simulated using the same gyro noise parameters as
the other simulations: σe = 5 × 10−6 rad, σu =

√
10× 10−10 rad/sec3/2, and σv =

√
10 × 10−7 rad/sec1/2.

A finite difference of the RIG angles is taken to produce angular rate observations. This filter is equivalent
to the reduced filter of Table 2 using RIG outputs while setting σe = 0 in the filter. The bias-estimate
errors and their 3σ bounds agree very closely with the results plotted in Figure 1, except for some initial
transients. The attitude errors on all three axes and the 3σ bounds on the star tracker’s boresight axis also
agree after initial transients have died out, but the standard MEKF filter underestimates the variance of the
attitude errors on the other two axes. This shows that naively ignoring a nonzero value of σe may produce
inconsistent estimates. Comparison of Figures 3 and 4 shows, though, that completely ignoring the RIG
measurement output noise can be preferable to including it in a filter that does not augment the state vector
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with RIG angle parameters.
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Figure 4. Standard MEKF Attitude Estimator Results

Conclusions

This paper presents two filters for attitude estimation that incorporate rate-integrating gyros. The
first filter uses an augmented state approach that accounts for correlations between contributions of the
rate-integrating gyro output noise to the angle variance, while the second one ignores these correlations.
Simulation results involving a star tracker coupled with rate-integrating gyros in a multiplicative extended
Kalman framework validate that both filters are consistent estimators, but that ignoring the correlations
results in significantly larger attitude estimation errors. This is consistent with analytical expressions for the
single-axis case, which show that ignoring these correlations overestimates the gyro output noise contribution
to the process noise covariance. These results are also compared with a rate-gyro-based filter using finite
differences of rate-integrating gyro outputs and ignoring the measurement noise in these outputs. This
comparison shows that naively ignoring the output noise can produce acceptable attitude and bias estimates
if it is not excessively large, but the filter may be inconsistent in producing erroneously small estimates of
its errors. The approach shown in this paper can easily be extended to other applications, such as inertial
navigation using rate-integrating gyros, by simply appending the state vector to estimate other states, such
as position, velocity, and accelerometer biases.

Appendix: Modeling Rate-Integrating Gyro Noise

Equations to model RIG noise in the single-axis case are derived here. These can be used in the three-
axis case under the usual assumption that the matrices Qe, Qu and Qv are diagonal. In Farrenkopf’s gyro
model [15] the bias β and angle output ϕ of a RIG obey

βk+1 = βk +

∫ tk+1

tk

ηu(τ) dτ (A.1a)

ϕk+1 = ϕk +

∫ tk+1

tk

ω̃(τ) dτ = ϕk +

∫ tk+1

tk

[ω(τ) + β(τ) + ηv(τ)] dτ

= ϕ̄+

∫ tk+1

tk

∫ τ

tk

ηu(τ
′′) dτ ′′ dτ +

∫ tk+1

tk

ηv(τ) dτ

(A.1b)
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where

ϕ̄ , ϕk + βk δt+

∫ tk+1

tk

ω(τ) dτ (A.2)

The zero-mean processes ηv and ηu have autocorrelations E{ηv(t) ηv(τ)} = σ2
v δ(t − τ), E{ηu(t) ηu(τ)} =

σ2
u δ(t − τ), respectively, and E{ηv(t) ηu(τ)} = 0. To obtain the correct means, the modeled quantities,

indicated by the subscript m, must be given by

ϕmk+1
= ϕmk

+ βmk
δt+

∫ tk+1

tk

ω(τ) dτ + zero-mean random number

= ϕ̄m + zero-mean random number

(A.3a)

βmk+1
= βmk

+ zero-mean random number (A.3b)

where the random numbers, which turn out to be correlated, must be chosen so that the second-order
statistics of the modeled quantities agree with those of the true equations. The autocorrelation of the RIG
drift bias is

E
{

β2
k+1

}

= E

{[

βk +

∫ tk+1

tk

ηu(τ) dτ

] [

βk +

∫ tk+1

tk

ηu(τ
′) dτ ′

]}

= E
{

β2
k

}

+ σ2
u

∫ tk+1

tk

∫ tk+1

tk

δ(τ − τ ′) dτ ′ dτ = E
{

β2
k

}

+ σ2
uδt

(A.4)

Therefore, RIG drift bias can be modeled by

βmk+1
= βmk

+ σuδt
1/2Nu (A.5)

where Nu is a zero-mean random number with unit variance. The correlation of the drift bias and angle is
given by

E {βk+1ϕk+1} = E

{[

βk +

∫ tk+1

tk

ηu(τ
′) dτ ′

]

×
[

ϕ̄+

∫ tk+1

tk

∫ τ

tk

ηu(τ
′′) dτ ′′ dτ +

∫ tk+1

tk

ηv(τ) dτ

]}

= E {βkϕ̄}+ σ2
u

∫ tk+1

tk

∫ tk+1

tk

∫ τ

tk

δ(τ ′ − τ ′′) dτ ′′ dτ ′ dτ

= E {βkϕ̄}+ σ2
u

∫ tk+1

tk

(τ − tk) dτ = E {βkϕ̄}+
1

2
σ2
uδt

2

(A.6)

This equation is satisfied by modeling the RIG output as

ϕmk+1
= ϕ̄mk

+
1

2
σuδt

3/2Nu + cNv

= ϕmk
+

1

2

[

βmk+1
+ βmk

]

δt+

∫ tk+1

tk

ω(τ) dτ + cNv

(A.7)

where c is a constant to be determined, and Nv is a zero-mean, unit-variance random number uncorrelated
with Nu. To evaluate c the autocorrelation of the RIG angle output is computed:

E
{

ϕ2
k+1

}

= E

{[

ϕ̄+

∫ tk+1

tk

∫ τ ′

tk

ηu(τ
′′′) dτ ′′′ dτ ′ +

∫ tk+1

tk

ηv(τ
′) dτ ′

]

×
[

ϕ̄+

∫ tk+1

tk

∫ τ

tk

ηu(τ
′′) dτ ′′ dτ +

∫ tk+1

tk

ηv(τ) dτ

]}

= E
{

ϕ̄2
}

+ σ2
u

∫ tk+1

tk

∫ tk+1

tk

∫ τ

tk

∫ τ ′

tk

δ(τ ′′′ − τ ′) dτ ′′′ dτ ′′ dτ ′ dτ

+ σ2
v

∫ tk+1

tk

∫ tk+1

tk

δ(τ − τ ′) dτ ′ dτ

(A.8)
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Now

∫ tk+1

tk

∫ tk+1

tk

∫ τ

tk

∫ τ ′

tk

δ(τ ′′′ − τ ′) dτ ′′′ dτ ′′ dτ ′ dτ =

∫ tk+1

tk

∫ tk+1

tk

min(τ ′ − tk, τ − tk)dτ
′ dτ

=

∫ δt

0

∫ δt

0

min(x, y) dx dy =

∫ δt

0

(

∫ y

0

x dx +

∫ δt

y

y dx

)

dy

=

∫ δt

0

[

1

2
y2 + y (δt− y)

]

dy =
1

3
δt3

(A.9)

and the σ2
v integral is the same as the σ2

u integral in Eq. (A.4). Therefore, Eq. (A.8) becomes

E
{

ϕ2
k+1

}

= E
{

ϕ̄2
}

+
1

3
σ2
uδt

3 + σ2
vδt = E

{

ϕ̄2
}

+
1

4
σ2
uδt

3 + c2 (A.10)

Since E
{

ϕ̄2
}

= E
{

ϕ̄2
m

}

by construction, this means that

c =

(

σ2
vδt+

1

12
σ2
uδt

3

)1/2

(A.11)

Then Eq. (A.7) simply becomes

ϕmk+1
= ϕmk

+
1

2

[

βmk+1
+ βmk

]

δt+

∫ tk+1

tk

ω(τ) dτ +

(

σ2
vδt+

1

12
σ2
uδt

3

)1/2

Nv (A.12)

The modeled measurement is then given by ϕ̃mk
= ϕmk

+ ve, where ve is a zero-mean Gaussian white-noise
process with variance σ2

e .
The variance of ϕ̃mk+1

is now derived. Substituting Eq. (A.5) into Eq. (A.12), and using ϕ̃mk+1
=

ϕmk+1
+ ve leads to

ϕ̃mk+1
= ϕmk

+ βmk
δt+

∫ tk+1

tk

ω(τ) dτ +
1

2
σuδt

3/2Nu

+

(

σ2
vδt+

1

12
σ2
uδt

3

)1/2

Nv + ve

(A.13)

The expectation of this equation given ϕmk
and βmk

is

E
{

ϕ̃mk+1
|ϕmk

, βmk

}

= ϕmk
+ βmk

δt+

∫ tk+1

tk

ω(τ) dτ (A.14)

The variance, denoted by Rmk+1
, is now computed through

Rmk+1
= E

{

(

1

2
σuδt

3/2Nu

)2
}

+

(

σ2
vδt+

1

12
σ2
uδt

3

)

E
{

N 2
v

}

+ E
{

v2e
}

(A.15)

Taking the expectations and collecting terms gives

Rmk+1
= σ2

vδt+
1

3
σ2
uδt

3 + σ2
e (A.16)

Note that this is equivalent to the upper left corner of Q(δt) in Eq. (24).
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