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This paper presents a paradigm shifting approach to the control of dynamic systems under
uncertainty governed by stochastic differential equations (SDEs). Large Deviations (LD) tech-
niques are employed to arrive at a control law for a broad class of nonlinear systemsminimizing
path deviations. Thereby, a shift from point-in-time to sample path statistics is suggested. A
suitable formal control framework which leverages embedded Freidlin-Wentzell theory is pro-
posed and described in detail. This includes the precise definition of the control objective
and comprises an accurate discussion of the adaptation of the Freidlin-Wentzell theorem. The
new control design is enabled by the transformation of an ill-posed control objective into a
well-conditioned sequential optimization problem. For the first time, this allows for an LD
based stochastic control design applicable to a comprehensive class of nonlinear systems. This
work includes a short numerical evaluation using two benchmark problems. The proposed
control paradigm allows for addressing the stochastic cost control problem as a special case.
The numerical examples furnish proof of the successful design.

I. Introduction

Since the days of the Apollo Guidance Computer, the task of integrating state information from different sources
into a controller under uncertainty has evolved into the centerpiece of interest in a tremendous variety of fields. The

Kalman-Bucy Filter and its subsequent derivatives have triumphantly conquered the world of engineering since their
inception in 1960/61 (see [1] and [2]). Almost every consumer and industrial application associated with model-based
estimation for systems governed by stochastic differential equations (SDEs), from cell phones to satellites, relies on
some version of an integrated Kalman Filter. For nonlinear as well as large-scale distributed systems, the extended and
unscented Kalman filter, particle filter, and Gaussian sum approaches are just a few examples of the rich development of
optimal estimation methods.

Historically, the focus with respect to dynamic systems under uncertainty has mainly revolved around the observer
problem instead of the stochastic control challenge. The reason for this might root in the certainty equivalence principle:
Although in general not valid for nonlinear systems, the application of the certainty equivalence principle to specific
nonlinear systems has been proven to be successful for many cases. Nevertheless, a true applicable extension of optimal
control methods to stochastic systems is desired. Stochastic optimal control techniques - in a classic sense - minimize
the mean or expectation of a performance index. Yet, a simple example illustrates the shortcomings of this approach and
the necessity of an extension: Assume a financial setting in which a portfolio strategy is sought which maximizes the
average rate of return or profit while the underlying stock or option pricing is determined by SDEs. Of what use would
such a strategy be if, for example, the associated probability of bankruptcy were 0.8? The resulting policy would simply
be meaningless. Although not of engineering nature, the analogy of this example to tracking problems, is evident.

Several approaches have been suggested to incorporate higher order statistics, for example the k th moment or
cumulant, into the cost function. Yet, outcomes have been limited to linear systems and quadratic cost functions. Here,
we establish a new control paradigm embedding Large Deviations (LD) techniques. The resulting shift from point in
time probability laws to sample function statistics represents a significant change in the prevailing doctrine for stochastic
control problems. This shift allows to address a large general class of nonlinear systems while not suffering from the
curse of dimensionality and while providing a physically more meaningful interpretation.
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II. Background: Deterministic and Stochastic Optimal Control
The theory of (deterministic) optimal control is a well-refined and highly successful domain in control theory ([3],

[4] and [5]). The unifying feature of all optimal control tasks is their objective: minimization of some cost function
or performance measure. Besides a few exceptions (e.g. minimum time control), optimal control problems can be
cast in a standard form: Find an admissible control u∗(t) that results in an admissible trajectory x∗(t) minimizing the
performance measure (index):

J(u) = θ
(
x(T),T

)
+

∫ T

0
φ
(
x(t), u(t), t

)
dt (1)

subject to Ûx(t) = b(x(t), u(t), t) .

There are three main approaches to solve these kinds of problems: calculus of variations, the Hamilton-Jacobi-Bellman
equation or dynamic programming (for discrete systems).∗ The solution via calculus of variations is based on
Pontryagin’s minimum principle (see [6] and [3]) and leads, in general, to an open-loop or feedforward control while
the Hamilton-Jacobi-Bellman equation allows for a feedback solution. The performance criterion in Eq. (1) is of the
generalH2-form, but several variations exist: For instance, the final time T can be either fixed (finite horizon), infinite,
or indefinite.† A large selection of different optimal control tasks and associated cost functions can be found in [8].

If the dynamic system is subject to uncertainty and hence becomes an Itō diffusion (see definition 4 in the appendix),
the primary performance index of Eq. (1), now being dependent on a large number of random variables,‡ turns into
a random variable itself. Equation (1) being a random variable renders the task of ‘minimizing’ meaningless since
further information is required. In general, information on the primary performance measure§ is incomplete such that a
secondary formulation becomes necessary. In classic stochastic optimal control, the minimization of the expectation of
the random process generated by Eq. (1) replaces the standard objective function and is in many texts regarded as ‘the’
stochastic optimal control problem:

J̄(u) = E
{
θ
(
xε (T),T

) )
+

∫ T

t0

φ
(
xε (t), u(t), t

)
dt

}
(2)

subject to dxε(t) = b
(
xε(t), u(t), t

)
dt +

√
ε G(xε(t)) dBt

x(t0) = x0

where Bt denotes Brownian motion of unit variance. Surprising difficulties and shortcomings arise from this seemingly
simple extension. One fundamental difference between deterministic and stochastic control is the fact that open- and
closed-loop are equivalent in the deterministic sense but not in the stochastic case.

Although the problem of stochastic optimal control has been addressed since the late 1960s,¶ mainstream control
engineering often regards it to be on the fringes. One aspect particularly appears to induce the missing spread of
statistical methods: Uncertainty in a dynamic system has repeatedly been approached from a state availability or
estimation point of view, i.e. the uncertainty of the system is lumped into the quest of detecting the true state. According
to the certainty-equivalence principle or separation principle,‖ a linear dynamic system subject to white noise in both
states and measurements will be optimally controlled with respect to the criterion of Eq. (2) if an LQR (linear quadratic
regulator) minimizing the deterministic performance measure is based on a separately designed Kalman filter’s estimates.
This combined Linear Quadratic Gaussian control (LQG) represents the most widespread optimal control technique for
systems under uncertainty.∗∗

Even though the certainty equivalence principle is not established for nonlinear systems in general, the extension of
LQG control to those system (via repeated or continuous linearization) has been proven highly successful in application

∗It is assumed without loss of generalization that the initial condition and initial time are specified. It could be argued that there are only two
main approaches de facto as the Hamilton-Jacobi-Bellman equation along with the dynamic programming principle both result from Bellman’s
principle of optimality.

†For details, see [7], chapter 6.
‡In continuous time, these are actually infinitely many.
§The probability density function conditioned on u(t).
¶For example, consider the treatment in Åström’s early standard: [9].
‖Although often used interchangeably, there is a subtle difference between the certainty-equivalence principle and the separation principle. For a

discussion see [10].
∗∗Note the complexity of the term optimality: The Kalman Filter in LQG is a minimum variance estimator (second central moment) and the LQR

an expectation minimizer (first moment). Hence, ‘optimality’ refers to two different statistical orders. From a stochastic point of view, a certainty
equivalence principle in terms of ‘optimality’ without further elaboration can potentially result in rather confusing settings.
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for over 50 years, especially when combined with robust control synthesis. This might be one of the contributing
factors why comprehensive research on pure stochastic control and its application has only infrequently surfaced during
the last 40 years. Another reason might stem from the fact that stochastic control was historically met with a strong
competition by the development of robust control from the 1970s to 1990s. While robust techniques, such as H∞ control,
specifically address disturbances in the system, it is not motivated by statistical reasoning. In particular, its ability to
cope much better with model errors†† than early LQG design caused the focus of the control community to move away
from statistical control.

However, there are still serious deficiencies associated with classic stochastic control in general. The most evident
inherent flaw lies in the fact that only the expectation of a performance criterion is minimized. The introductory
investment example has already illustrated the meaninglessness of certain strategies if only the mean is considered. This
insufficiency was realized as early as in the 1960s, and different solution methods were promoted subsequently. Some
authors assign the label statistical control to those extensions of the minimum mean optimal control. Even though the
term stochastic control suggests that it encompasses all control techniques under uncertainty, its historic use in literature
almost exclusively addresses the mean cost problem.

III. Previous Work
Statistical optimal control can be divided into four major groups which share certain interconnections: stochastic

optimal control devoted to the mean of the performance measure;‡‡ minimum cost variance control (MCV) minimizing
the variance of the performance index with its expectation constrained to a prescribed level; risk-sensitive control (RS)
minimizing the tail of the state’s probability distribution; cost-cumulant control (kCC) minimizing either a specific kth
cumulant or a linear combination of a finite number of cumulants. Note that classic stochastic control corresponds
to first cumulant control while MCV coincides with second cumulant control. A short survey and reference list on
statistical control can be found in [11]. As the mean and the variance correspond to the first and second cumulant,
respectively, classic stochastic control and MCV simply could be integrated in kCC with respect to nomenclature.
However, the development of these methods differs in both its history of advancement and its employed techniques.
Unfortunately, several publications use ‘cumulant control’ in their titles, but solely treat the MCV case, leading to
confusion in surveys like [11]. Therefore, two distinct short discussions are provided in this study. For a more detailed
account, it is referred to [10].

A. Minimum Variance Control
Some early research on minimal (output) variance control strategies was performed by Åström during the 1960s

and is summarized in [9]. However, his transfer function based ideas on minimizing the output variance for discrete
linear systems with memory have not been met with widespread reception and hardly any further development appeared.
Sain’s initial comprehensive research in stochastic control problems in [12] and [13] centered around minimal cost
variance control of linear time-invariant dynamic systems with quadratic costs. The mean of the performance index has
been constrained to a constant value, E{J(u)} = D which is lower bound by the infimal cost of the associated mean
performance problem (optimal stochastic control problem). Thus, a set of admissible controls,U, with an associated
space of admissible trajectories, X, is defined. Then, the variance of J(u) is minimized over the setsU and X. In [14],
Souza and Sain consider the same cost variance problem for the estimation problem while Cosenza analyzes MCV for
the discrete case in [15]. Sain and Liberty further advance the MCV approach of [13] in [16] to time-varying linear
systems providing an open-loop optimal feedback solution. The control strategy can now be expressed via the solution
of a two-point boundary value problem of 4n coupled equations. Relationships between RS control and MCV are
explored by Sain and Won in [17] and by Won in [18]. Won solves the full-state feedback MCV problem for linear
time-varying systems with quadratic costs in [17] for a finite horizon. Sain et al. present in [19] a detailed and thorough
mathematical theory on cost mean and variance control with connections to risk-sensitive control, summarizing previous
research. The closed-loop state feedback solution is extended to an infinite horizon cost function by Won in [20]. Linear
MCV theory is completed as a subset of Pham et al.’s solution of the kCC problem including noisy output feedback.

††This includes deterministic disturbances.
‡‡Linear quadratic Gaussian control (LQG) forms the most most basic consideration of stochastic optimal control.
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B. k-th Cumulant Control
The advancement of k th cost cumulant control is closely related in both time period and authorship. In kCC, the

MCV technique is stretched beyond the variance by minimizing a weighted sum of higher order moments: Liberty
and Hartwig extend the analysis of performance index statistics for quadratic cost functions and linear systems by
developing a characteristic function generating cost cumulants in the time domain in [21] and [22] and provide evolution
equations as well as probability densities for the k th cost cumulant. This is the starting point of k th cumulant control.
Pham et al. solve the kCC problem for a closed-loop state feedback on a finite horizon in [23]. Subsequently, Pham et
al. are able to drop the state availability requirement in [23] as Pham solves the k th cumulant control problem for linear
systems in finite and infinite time-horizon settings for both state-feedback and output feedback control. Results are
further published in [24] and [25] marking the completion of the linear kCC. The control performance is tested via a
structural (base-isolated building) benchmark problem in [25]. Despite more than 40 years of effort, research outcomes
for higher-order statistical control are still limited to linear dynamic systems with quadratic costs. Pham supplies by far
the largest body of work on cumulant cost control beyond the variance. His dissertation ([26]) is the most rigorous and
comprehensive account of the entities of MCV and kCC. Furthermore, he has successfully applied kCC to a variety of
structural benchmark problems in [23], [27], [24] and [25].

C. Risk-Sensitive Stochastic Optimal Control
Risk-sensitive (RS) stochastic optimal control, sometimes also called linear exponential quadratic control, is an

extension of the classic stochastic optimal control problem, and was developed mostly in between the 1970s and the 1990s.
The fundamental idea consists of penalizing large total cost variations (of the quadratic criterion) disproportionately
high. Therefore, instead of minimizing the average of the quadratic cost, the average of the exponential of the quadratic
cost is minimized:

Jµ(u) = µ E
{
exp

(
µ

(
1
2

∫ T

0
‖x(τ)‖2Q + ‖u(τ)‖

2
R dτ

))}
. (3)

Here, the parameter µ allows adjustment for the desired risk-sensitivity: While µ > 0 corresponds to risk-sensitive
behavior, µ < 0 yields a risk-seeking strategy. The limit for µ→ 0 recovers the standard (risk-neutral) LQG control. The
risk-sensitive criterion is introduced by Jacobson in [28]. In his original work, he addresses both a negative and positive
design parameter µ for the completely observed case and for discrete as well as continuous systems. The risk-sensitive
method is further extended by Speyer et al. in [29] to the partially observed case for discrete time systems including the
continuous time terminal cost situation. Speyer considers risk-sensitive problems under measurement noise in [30].
Kumar and van Schuppen propose the general solution of the partially observed linear exponential quadratic control
problem for continuous time systems in [31] without considering any plant or process noise.

Whittle is able to arrive at the general solution of the partially observable risk-sensitive optimal control problem for
discrete systems in [32] by replacing the exponential-of-integral (EOI) statement with the logarithm-exponential-of-
integral problem (LEOI):

Jµ(u) = −
2
µ

ln
(
E

{
exp

(
−
µ

2
J(u)

)})
with J(u) = xTNHxN +

N−1∑
i=1
(xTi Qxi + uTi Rui) .

He also establishes that the LEOI problem corresponds to the minimization of a linear combinations of all the cumulants
associated with the stochastic quadratic cost,§§ and introduces a new LEQG certainty-equivalence principle. The same
solution is obtained by Bensoussan and van Schuppen a few years later for continuous systems using the EOI approach
in [33]. The first culmination of RS optimal control is reached in the early 1990s: Whittle publishes his book [34]
presenting the RS maximum principle; Bensoussan’s first edition of [35] contains all solutions to EOI control up to
this point, including partial observations. In [36], Whittle connects LD techniques with risk-sensitivity by employing
asymptotic probabilities to establish an RS maximum principle for the case of partially observed states. An application
analysis for RS control is found in [37] when this technique is applied by Won et al. to a structural problem under
seismic disturbances. A summary of the development of RS control theory together with a discussion about relations
between RS, MCV, and k th cumulant control is provided by Won et al. in [11].

§§Indeed, expanding the logarithm and exponential function into a power series each results after some tedious algebraic manipulations in the
following series: Jµ = κ1 +

µ
4 κ2 +

µ2
24 κ3 +

µ3
192 κ4 + . . . .
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IV. The New Idea
Many control designs have been developed over the last 50 years, but applicable techniques based on statistical control

still seem to be of limited availability in comparison to other control techniques. As previously discussed, the most
significant weakness of mean cost designs originates from the fact that there are many situations in which the expectation
of the performance matter does not admit a meaningful control problem. In terms of engineering applications, there
exists an ample variety of potential concerns or constraints like operational limits, bifurcative characteristics, fatigue,
tracking limits, disproportionately high costs for large deviations, to name a few. MCV control and its successor kCC
are mostly limited to linear systems and quadratic costs. Unfortunately, the theoretical advancement of statistical control
has followed a significantly different course than the development of estimation theory: While advanced estimation
methods kept their low order (moment) character, i.e. they remained based on the first two (central) moments, significant
efforts went into the improvement of the propagation through nonlinear systems. Statistical optimal control, on the
other hand, has almost exclusively focused on linear systems (and quadratic costs) and has sought improvement through
incorporation of either higher order moments or cumulants, for that matter. Yet, it remains unclear how the design
parameters, i.e. the assigned weights to the different cumulants in the minimization process, should be determined.

A. New Paradigm
This work claims that both current statistical control and optimal estimation techniques are caught in the ‘point-in-time

trap’: Stochastic dynamic systems are consistently interpreted from an ensemble statistics aspect. The mean or the
variance at a certain point in time t is considered and − where appropriate − minimized. This is highly intuitive for
the first two moments and for linear systems, but quickly loses its significance. It is really not of interest to consider
the probability of deviation over all ensemble functions at a certain point of time, the central question should rather
address the probability that a particular sample path, i.e. a particular realization, deviates from its mean during a certain
time interval. The ‘point-in-time trap’ becomes even more evident from a computational point of view: all nonlinear
current statistical optimal control problems (similar to estimation techniques) suffer from the curse of dimensionality as
the probabilistic expressions require the evaluation of multidimensional integrals over the entire (high-dimensional)
state-space.¶¶ The required numerical approximation technique always has to rely on a suitably selected grid whose
discretization complexity will grow exponentially with the dimension of the state space.

The origin of this trap, i.e. the the standard angle of stochastic analysis, might intrinsically be connected to the
definition of a stochastic process: In its basic form a stochastic process is defined as a family of indexed random variables
with index set T , i.e. {X(ω)t }t∈T . This gives rise to the intuitive interpretation that a real-valued stochastic process is
created by executing a random experiment on the sample space Ω at every time t. Thereby, the sample space Ω can
simply be a finite set of numbers or the continuum.∗∗∗ The outcome of this repeated random experiment then determines
the value of the stochastic process at time t.

However, another possible interpretation executes a single random experiment on the sample spaceΩ, now containing
all possible path realizations, at time t = 0. Hence, the outcome of the random experiment picks a certain path, and the
value of the stochastic process at time t corresponds to the value of the particular sample path. It is a pure academic
question to decide which interpretation represents reality better. Yet, all observed real measurements allow only for the
computation of time averages or statistics, respectively, rather than ensemble ones. The property of ergodicity then
allows for interchanging the time average with the ensemble average. It is the purpose of this work to approach SDEs
from a different angle in comparison to standard approaches, i.e. ergodicity is not utilized as sample path statistics are
employed. It is claimed that this is a more consistent analysis when the probability of a sample path’s deviation from its
nominal (unperturbed) solution is concerned as ergodicity addresses averages and not probabilities directly. It is the
goal to present a sophisticated controller which in addition exhibits a clear structure and simplicity in design such that it
is appropriate for engineering applications. The new control paradigm is free from the inherent weaknesses associated
with current methods for nonlinear and non-Gaussian systems which arise from the fact that the number of parameters
necessary to fully describe the system is infinite.††† In addition, any method based on a finite number of parameters
requires not only additional knowledge of the system, but still suffers from the curse of dimensionality.

The foundation of the presented new approach emerges from LD theory and specifically is built upon the concept
of sample path large deviations: Schilder’s theorem and the Freidlin-Wentzell theory provide the necessary building
blocks. As this study constitutes the first treatment of a new control paradigm, the main attention is on the consistent

¶¶This might be via the Chapman-Kolmogorov, Fokker-Planck, Kushner, or Zakai equation depending on the quantity of interest.
∗∗∗For engineering applications, it is assumed that real-valued random variables or random processes are of concern.
†††This prevails in any form, be it either the (continuous) characteristic equation, the probability distribution, the probability density function (if

existent) or the moments (if existent).
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advancement of results for different dynamic systems under uncertainty. Therefore, full state knowledge is assumed
while the associated partial observations or estimation problem is left for later research.

B. Motivating Example
The path dependence of the exit probability for a simple nonlinear system under open-loop control is demonstrated

via a Monte-Carlo simulation.‡‡‡ Assume that an Itō diffusion is generated by the simple nonlinear stochastic differential
equation

dxε(t) =
[
x2(t) − 1 + u(t)

]
dt +
√
ε dBt (4)

with Bt being Brownian motion of unit variance. Four different control inputs are considered, i.e.

u1(t) =
5
α

1
1 + (5t − 12.5)2

−

( 1
α

tan−1(5t − 12.5)
)2
+ 1 u3(t) =

{
0 for 0 ≤ t < 4

2 − (2t − 9)2 + 1 for 4 ≤ t ≤ 5

u2(t) = +
2
5
−

4
25
(t − 2.5)2 + 1 u4(t) =

{
2 − (2t − 1)2 + 1 for 0 ≤ t < 4

0 for 4 ≤ t ≤ 5
(5)

where the abbreviation α = tan−1(12.5) is used for convenience. These control inputs result in four different nominal
trajectories on the time interval [0,5] transitioning from −1 to 1 as depicted in Figure 1. Here, nominal trajectory refers
to the solution of the deterministic ODE emerging as the limit of Eq. (4) for ε → 0. The only purpose of these four
arbitrarily chosen control inputs is to demonstrate the extent to which the deviation probability depends on a particular
nominal path. Certainly, they are not optimal in any stochastic or deterministic sense. In addition, a single sample
trajectory for the perturbed Eq. (4) subject to control inputs u1(t), u2(t) and u3(t) is shown in Figure 1. Most sample
paths for u4(t), however, are unstable and omitted. Now, a Monte-Carlo simulation of Eq. (4) is performed for

√
ε = 0.01
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(a) Trajectories for Control Strategies u1(t) and u2(t)
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(b) Trajectories for Control Strategies u3(t) and u4(t)

Fig. 1 Exemplary Control Strategies for Eq. (4) for x(0) = −1 and x(5) = 1

based on an Euler-Maruyama method. Here, the time interval [0,5] is divided by 104 sample points for the numerical
‡‡‡A simple control problem for a time-invariant linear scalar discrete system, subject to a random Gaussian excitation, is discussed as another

motivating example in [10]. There, it is shown that the deviation probability remains independent from the control input for a linear open-loop system.
However, a different situation emerges if a nonlinear system is affected.
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integration and 105 sample paths are thus created. The quantity of interest is the empirical probability that a sample
path xε(t) deviates more than a distance of K from its nominal solution x(t), i.e.

Pε(S) = Pε
(
|xε(t) − x(t)| ≥ K for some t ∈ [0,5]

)
.

For the Monte-Carlo simulation, K = 0.1 is chosen and the resulting empirical probabilities are shown in Table 1.
Although all nominal trajectories travel from −1 to 1 during the time interval [0,5], significantly different deviation
probabilities arise depending on the specific path taken. In particular, Table 1 reveals an immense difference between
the deviation probability of nominal trajectories 3 and 4. Thereby, trajectories 3 and 4 are merely point symmetric to
each other with respect to the half point of the time interval.

Table 1 Empirical Deviation Probability for Eq. (4), ε = 10−4, K = 0.1

Control Input
u1(t) u2(t) u3(t) u4(t)

Pε
(
S
)

0.8873 0.5582 0 0.9981

It is the goal of the control paradigm developed in this chapter to choose the particular control u(t) such that the resulting
trajectory of the underlying nominal (unperturbed) ODE exhibits the lowest deviation probability. In addition, the new
controller will allow to incorporate a large variety of additional constraints on the state as well as the control.

V. Large Deviations Theory

A. LD Overview
LD techniques are of central importance for the newly suggested control paradigm as they provide the theoretical

gateway to address the probabilities of interest. For a more solidifying rigorous introduction of the needed concepts in
order to enable an in-depth understanding, it is referred to the underlying original work in [10].

LD theory has its origin in the Scandinavian actuary industry where early results were used for the evaluation of
risks. Its birthplace lies within the work of Harold Cramér ([38]), but it is still a very active area of research with
applications especially in applied probability for mathematical finance (with emphasis on option pricing, risk estimation
for large portfolio losses and stochastic volatility models). In general, probabilities are split in an LD rate and a sequence
converging at a subexponential rate.

In contrast to other branches of mathematics, LD theory is far from being a general ‘theory’ as its name might
suggest. It is a branch of probability theory which is rooted in many different areas, and it has grown into a vast,
yet loose collection of differently motivated results during its more than 70-year history. In a simplified way, it is a
generalization of convergence theorems such as the law of large numbers, ergodic theorems, or the Glivenko-Cantelli
theorem: These theorems essentially state that random variables over large populations are approximately equal to
their expectation, and deviations become increasingly unlikely, LD theory acknowledges the existence of untypical
fluctuations and attempts to characterize them. Its name might be misleading in a second sense as LD theory contains
both the law of large numbers and the central limit theorem. Although its origin in risk analysis was purely motivated
by application, general LD theory has evolved into a highly sophisticated abstract mathematical construct based on
measure theory where sets on the real line have been replaced by abstract topologies. In LD theory, it is not unusual if
the same answers are reached by using different paths that seem completely unrelated.

Surprisingly, LD results for stochastic processes have not yet found their way into mainstream control engineering
applications although their contributions in other branches of both science and engineering have proven to be
indispensable. These are, in particular, problems related to signal processing, information entropy and simulation
techniques of rare events. As many of the major developments of LD theory have been already foreseen by Boltzmann,§§§
it is no wonder that physical applications compromise the largest body of LD application examples, such as equilibrium
statistical mechanics, chaotic systems and multifractals, nonequilibrium systems and fluctuation relations, to name a few.
By nature, rare event prediction and therefore asymptotic analysis has been applied extensively in context of natural

§§§Ellis emphasizes in an account of Boltzmann’s contributions to statistical physics in [39] how deeply connected his early results are to modern
LD theory.
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disasters (hurricanes, avalanches, tsunamies, etc.). LD techniques are inherently tied with simulation methods such as
importance sampling.

The adaptation in engineering applications might often be hindered by technical notation and the focus on an
abstract formulation. In addition, there is a certain lack of textbook literature on LD theory in traditional engineering
notation, preventing its appeal to a broader engineering community. The classic and comprehensive references for LD
theory are the well-established books by Dembo and Zeitouni in [40] and by den Hollander in [41]. Both treat the
subject in a mathematically substantial and rigorous way in topological settings. Thereby, they fulfill the role of a gold
standard. For an engineering audience, however, an account of LD results utilizing some mathematical simplifications,
by solely addressing random variables taking values on R or Rd, might result in a more engaging statement. Such
an approach has been presented in the lesser known book by Bucklew in [42]. Although Ellis criticized Bucklew’s
presentation for a lack of mathematical accuracy in parts,¶¶¶ he still praised it for its unique attempt in demonstrating LD
theory. Other classic references include the older survey by Varadhan in [44] and more recent short discussion with
emphasis on application examples in [45]. In particular, Varadhan’s notes in [44] provide a consolidated account for
the mathematically minded, but readability as a first time access to LD theory is heavily limited due to their highly
condensed character. Kallenberg’s standard reference on probability in [46] supplies a concise chapter on LD theory,
exhibiting important results. In addition, the notes of Ellis in [47] and [39] contribute a discussion centered on statistical
mechanics. Touchette supplies an additional excellent series of notes with focus on statistical mechanics in [48] and in
the form of a subject primer in [49] including simulation. For years, the introduction by Lewis and Russell in [50]
has been a popular subject primer of LD theory. The LD treatment on stochastic differential equations is the core of
this work and it is often traded under different names such as Nonequilibrium Statistical Mechanics, Freidlin-Wentzell
Theory or simply Sample Path Large Deviations. The centerpiece of the newly suggested control method is the so-called
Freidlin-Wentzell theorem which is the culmination of the first part in the development of Freidlin and Wentzell in [51].
In the following, the most important LD results necessary to arrive at the suggested controller design, i.e. the general
LD principle and the Freidlin-Wentzell theorem, are summarized. For a more in-depth understanding, [10] provides
rigorous introduction of the concepts tailored to an engineering audience.

B. Abstract Large Deviations Principle
LD theory is concerned with the asymptotic probabilities of empirical quantities with respect to their underlying

statistics. Thereby, all individual results of LD theory (in the form of theorems) follow a consistent two-stage formal
approach:

1. First, it is established that an infinite family of (probability) measures {Pη}η∈[0,∞) obeys a LD Principle on a
topological space X. As such, the limiting behavior of Pη is characterized as η→∞ by providing asymptotic
upper and lower exponential bounds on the values which Pη assigns to measurable subsets of X. These bounds
are stated in terms of a rate function. In addition, all technical prerequisites and underlying conditions are stated.

2. The corresponding rate function is determined and an implicit or explicit expression defining its specific appearance
is given together with a supplemental characterization.

Although the limiting behavior of a family of measures {Pη} is intuitively associated with η → ∞, the abstract LD
Principle as well as the Freidlin-Wentzell theory are concerned with the limiting behavior of measures Pε for ε → 0. In
terms of LD theory, these two formulations are absolutely equivalent by simply setting η = 1/ε. It is now appropriate to
introduce abstract and precise definitions for the two entities of interest, the LD Principle and the rate function.

Definition 1 (Large Deviations Principle) Let Pε be a family of probability measures on (X,B) where X is a
topological space so that open and closed sets are well-defined.17 Let S denote the closure of any set S ∈ X, So the
interior and Sc the complement of S. Then, {Pε} is said to satisfy a Large Deviations Principle with a rate function I if,
for all S ∈ B,

− inf
x∈So

I(x) ≤ lim inf
ε→0

ε ln{Pε(So)} ≤ lim sup
ε→0

ε ln{Pε(S̄)} ≤ − inf
x∈S̄

I(x)

where the infimum over an empty set is interpreted as∞. The suggestive notation that the family Pε satisfies a Large
Deviations Principle is given as

P(S) � e−
1
ε I (S) .

¶¶¶For details, see book review by Richard Ellis in [43].
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The LD limit is the limit needed to retain the dominant exponential term and also called the probability estimate on the
logarithmic scale. While specific applications, such as Cramér’s theorem or the Freidlin-Wentzell theory, contribute
rules to determine specific rate functions, the impression that a rate function can be calculated explicitly for many
stochastic processes is false. Closed form expressions are only available for a few simple cases. However, all rate
functions share a set of properties by definition.

Definition 2 (Rate Function) A mapping I : X → [0,∞] is called a Rate Function or an Action Functional if the
function I is lower semicontinuous, i.e. for all real numbers α ∈ [0,∞), the level set ψI (α) , {x : I(x) ≤ α} is a closed
subset of X. A rate function I is called a Good Rate Function if in addition all the level sets ψI (α) are compact subsets
of X. The effective domain of I, denoted DI , is the set of points in X of finite rate, namely, DI , {x : I(x) < ∞}.

Note that the abstract LDP is expressed in terms of probability measures on sets and therefore the mathematical definition
applies a priori to any random variable. This rigorous definition of the LDP is due to Varadhan whose contributions
immensely advanced LD theory.
This abstract LDP involving limits of lower and upper bounds for sets in topological spaces is rather technical and
counter-intuitive; however it encompasses all varieties of situations including pathological ones.18 Additional or stricter
properties than the one in definition 2 might result. Hence, a detailed analysis of the underlying functional spaces based
on the appearing natural supremum norm is performed for the control problem in section VI. This results in a few
simplifications of the LDP in definition 1 and is discussed in detail in section VI.B.

C. Freidlin-Wentzell Theory
Schilder’s theorem19 furnishes the sample path probability for a Brownian motion realization in the small noise

limit. The intricate details of Schilder’s theorem (including a detailed proof), its connection to other LD results (such as
the Gärtner-Ellis theorem) as well as the irregularities of the Wiener process are discussed in detail in [10].

While Schilder’s Theorem established an LDP for the Wiener process, Freidlin and Wentzell extended in [51] the
results for Brownian motion to deviations in the small-noise limit for diffusion processes generated by SDEs.20 Although
this is mostly referred to as the Freidlin-Wentzell theory, it represents only a part of the full theory by Freidlin and
Wentzell which extends much further than SDEs and whose importance and impact cannot be overemphasized. First, the
simpler case of an Itō diffusion process generated by a scalar SDE with state-independent noise is considered. Here, the
LDP follows from Schilder’s theorem (see [10]) via the contraction principle in a rather unambiguous application. The
contraction principle allows to immediately substantiate an LDP for a pushforward measure arising from a transformation
via a continuous map from a (measurable) space already obeying an LDP. The full version of the Freidlin-Wentzell
theorem for a multidimensional Itō diffusion process with state-dependent noise can be found in the appendix. The
Freidlin-Wentzell theorem describes the low-noise limit of an SDE by employing LD techniques. The random path
generated by an SDE converges to the nominal trajectory in probability where nominal trajectory refers to the solution of
the ordinary differential equation arising from Eq. (21) for ε → 0. In particular, the Freidlin-Wentzell theorem quantifies
the likelihood that a realization of the the process ventures away from the deterministic path in the limit ε → 0.

Theorem 1 (Simple Freidlin-Wentzell Theorem) Given a scaled nonlinear Itō diffusion process {xε(t)} as follows:
Let (Ω,F , {Ft }t≥0,P) denote a proper defined complete filtered probability space with sample space Ω, σ-field F and
probability measure P, and let the process be adapted to the filtration {Ft }t≥0. Then, {xε(t)} is the diffusion process
that is the unique solution of the Itō stochastic differential in Eq. (21), i.e.

dxε(t) = b
(
xε(t), t

)
dt +

√
ε dBt, xε(0) = x0

for all t ∈ [0,T] with xε : Ω × [0,T] → R and where b : R × [0,T] → R is uniformly Lipschitz continuous in the first
variable (namely, |b(x) − b(y)| ≤ B |x − y |) and continuous in the second. The existence and uniqueness of the strong
solution {xε(t)} is standard.

17The simplest situation occurs when elements of BX , the Borel σ-field on X, are of interest. Without loss of generality, probability spaces are
assumed to be completed.

18For instance, B not necessarily being the Borel-σ-field or some non-measurable open sets.
19See [40], [52], [42], [44] or [51] for details.
20The original work was published in Russian in the 1970s while the English translation in [51] as well as the second extended edition in [53] are

the standard references to the full body of work by Freidlin and Wentzell on random dynamic systems.
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Let Pε denote the probability measure induced by {xε(t)} on Cx0 [0,T]. Then, Pε = PBε ◦W−1, where PBε is the
measure induced by {

√
ε Bt }, and the deterministic map W : C0[0,T] → Cx0 [0,T] is defined by w = W(g) with w being

the unique continuous solution of

w(t) = x0 +

∫ t

0
b
(
w(s)

)
ds + g(t), t ∈ [0,T] . (6)

Then, {xε(t)} satisfies an LDP according to definition 1 in Cx0 [0,T] with the good rate function

I(w) =

{
1
2

∫ T

0 | Ûw(t) − b
(
w(t)

)
|2 dt, w ∈ H1

x0 [0,T]
∞, w < H1

x0 [0,T]
. (7)

Note that despite its name, the Large Deviations principle in theorem 1 addresses the small noise limit of SDEs. The
rate function in Eq. (7) is also called the action functional, effective action, Lagrangian, or entropy depending on the
context in which the Freidlin-Wentzell theory is presented. The terms ‘action’ and ‘Lagrangian’ stem from an analogy
with the action of quantum trajectories in the path integral approach to quantum mechanics. The minimum and zero of
the rate function appear at the trajectory of the deterministic system obtained in the zero-noise limit. Functional LD
principles as in theorem 1 are the most refined LD results available for SDEs. Note that other, more specific or ‘coarser’
LD principles can again be derived from theorem 1 by contraction. The path minimizing the rate function over a desired
set A (i.e. the path with the largest probability) is called the optimal path or maximum likelihood path or instanton of A.

In most literature on probability and stochastic calculus in general - and LD theory in particular - only the state-
independent noise version of the Freidlin-Wentzell theorem is stated, if at all. The full version of the Freidlin-Wentzell
theorem, i.e. including state-dependent noise, is stated in theorem 2 the appendix. Dembo and Zeitouni in [40] as
well as Bucklew in [42], Varadhan in [44] and the original work in [51] are among the few offering a proof for the
state-dependent noise case which is significantly more involved than the proof via the contraction principle for theorem
1. A version of the proof adapted to an engineering audience can also be found in [10].

VI. The New Control Framework
After theorem 1 has provided the necessary mathematical tool to consider large deviations of Itō diffusion processes,

a proper control objective and the resulting new paradigm following the previous motivating example can be established.
We now construct the necessary framework for the newly suggested control paradigm called Minimum Large Deviations
(MLD) control. Several formal statements are set up representing initial ideas deemed most appropriate; but those do
not comprise an exhaustive treatment of possibilities enabled by the Freidlin-Wentzell theory. The such constructed
control can be conveniently extended to higher order systems without suffering from the curse of dimensionality. As a
specific application governed by the new paradigm, the stochastic cost problem for nonlinear systems can be addressed
in an unprecedented general fashion.

A. Control Objective
The underlying concept in the design of the new controller is to minimize the asymptotic probability that a sample

path of a given Itō process strays far away21 from its mean path. Hence, this concept implies the notion of a distance
metric between the sample path and the mean path in the corresponding function space. As realizations of the Itō
diffusion process generated by Eq. (21) are continuous almost everywhere22 as well as continuous wp 1, the proper
function space containing all sample paths becomes Cx0 , the space of all (vector-valued) continuous functions starting at
x0.

As Brownian motion sample paths are of finite quadratic variation, i.e. of finite energy, the energy norm L2[0,T]
might appeal as an appropriate distance metric. However, its employment in this context would be highly disadvantageous:
Integral norms average singular deviations, effectively counteracting the basic concept of LD and probabilistically
dominating sample paths. In addition, the resulting implementation of an optimization scheme on an open L2 space
would prove intractable. A pure technical reason for not utilizing the L2[0,T] norm lies in the fact that C[0,T] is not
complete with respect to any Lp norm with 1 ≤ p < ∞. Thus, the design goal will be formulated employing the natural

21As a matter of fact, it can also be shown that the controller minimizes small deviations.
22This includes Brownian motion itself as the limiting process of Eq. (21) for a vanishing system with b(x(t), u(t), t) → 0.
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norm on C[0,T], i.e. the maximum or∞-norm.23 Yet, the notion of energy is already incorporated, as theorem 2 relates
the asymptotic probability of trajectories in a set S to the one particular path in S requiring the least effective action for
its deviation. By employing the∞-norm, the definition of the MLD control objective can now be suggested.

Definition 3 (MLD Control Objective) The control objective of Minimum Large Deviations (MLD) control is to
minimize the asymptotic probability that a sample path xε(t) of a scaled Itō diffusion process as specified in definition 4
and theorem 2 deviates more than an amount K from the nominal path x(t) generated by the underlying unperturbed
differential equation emerging in the limit ε → 0. That is, minimizing

Pasxε
(
S[0,T]

)
= Pasxε

(
‖xε(t) − x(t)‖∞ ≥ K

)
= Pasxε

({
Cx0 [0,T]

∖
BK (x(t); ‖.‖∞)

})
= Pasxε

({
w ∈ Cx0 [0,T]

��� |w(t) − x(t)| ≥ K for some t ∈ [0,T]
)

(8)

where Cx0 [0,T] denotes the space of continuous functions on the interval [0,T] with initial value x0. The asymptotic
probability is interpreted in the LD sense of definition 1 as

ln
{
Pasxε (S)

}
= lim
ε→0

ε ln
{
P(xε ∈ S[0,T])

}
.

Here, a scalar process xε(t) was assumed for ease of notation. The open ball BK (x(t); ‖.‖∞) describes a ‘tube’ or
‘channel’ around the nominal path x(t),24 i.e. the solution of the unperturbed differential equation (ε → 0) in the time
interval [0,T]. It is the goal of the design to determine a control law u(t) such that a nominal path results for which
the exit probability from the channel defined by BK (x(t); ‖.‖∞), as depicted in Figure 2, is minimized. The definition

�
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�()
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�� �  ; ∥·∥ 

��() ∉ �

��() ∈ �

�
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Fig. 2 Illustration of the set S[0,T] in Eq. (8)

of the control objective in Eq. (8) easily extends to the vector-valued case: The supremum norm for a vector-valued
process results as the highest value occurring in any dimensions. A design based on this interpretation would correspond
to a worst case scenario. In addition, a desired individual bound on the supremum norm of each dimension can be
considered, specifying maximum deviations in each coordinate direction. This more general case is reflected in the
control statement in section VI.E.

B. Adaptation of the Freidlin-Wentzell Theorem
The formal proposal of the control objective in definition 3 can now be connected in technical terms to the

Freidlin-Wentzell theory. Definition 3 already states that the asymptotic probability in Eq. (8) is to be interpreted in
23The space of continuous functions on a closed and bounded set [0,T ] is a complete metric space with respect to the supremum norm.

Occasionally, the LDP in Schilder’s theorem is defined on a Sobolev space, but the underlying norm as well as the H1-norm lack any meaningful
usability for the desired control task.

24Given that the use of ‘tube’ implies the notion of something ‘round’ in higher dimensions, it might intuitively relate to a squared norm. Therefore,
the term ‘channel’ is preferred in the context of this work.
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the LDP sense of the Freidlin-Wentzell theorems 1 and 2. This allows to precisely state the underlying meaning of
definition 3. The system state is an Itō diffusion generated by Eq. (21) with scaling parameter ε:

dx(ω, t) = b
(
x(ω, t), u(t), t

)
dt +

√
ε G

(
x(ω, t), t

)
dBt, x(t0) = x0 (9)

where all provisions of definition 4 apply. As before, unit variance Brownian motion Bt is considered as varying noise
intensity is thought to be absorbed in G(x(t), t). The scaling parameter ε is necessary to express the family of probability
measures Pε for the application of the Freidlin-Wentzell theorem which establishes the LDP for the process in Eq. (9) as

− inf
x∈So

I(x) ≤ lim inf
ε→0

ε ln{Pε(So)} ≤ lim sup
ε→0

ε ln{Pε(S̄)} ≤ − inf
x∈S̄

I(x) (10)

where S ⊂ Cx0 with So and S̄ denoting its interior and closure, respectively. The expression I(x) denotes the rate
function of Eqs. (7) and (25). The existence of the Itō process requires b,G ∈ C[0,T] with respect to t as well as b and G
uniformly Lipschitz continuous in x. This certainly includes most nonlinearities occurring in engineering applications,
such as saturation, trigonometric relations, absolute values, state products, convection and advection terms. Note that the
Lipschitz condition for the existence of the solution can be relaxed from a global condition to local Lipschitz continuity
for every set Ai with

⋃
i Ai being a covering of R or Rd , respectively.

The initial condition x0 for the process in Eq. (9) is deterministic. The domain S[0,T] in Eq. (8) is closed with respect
to the ∞-norm.25 However, the domain S[0,T] is only semi-bounded and cannot easily be converted into a domain
D ∈ Rd of admissible deviations for all t ∈ [0,T] as required for the impending optimization task (see section VI.C).
The LDP for Eq. (9) only provides upper and lower bounds, so the meaning of the asymptotic probability as postulated
in definition 3 could be called in question. A natural approach for minimization should focus on the upper bound, which
applies as S[0,T] in Eq. (8) is closed.

In addition, an argument for the coinciding upper and lower bounds in Eq. (10) can be made: The probability mass
of a deviation set is concentrated in one dominating point or one path, respectively. In a simple case, such as Cramér’s
theorem, the infimum of the rate function is attained at the point closest to the sample mean. The same plausibility
argument can be extended to the case of sample paths: It seems reasonable to assume that the infimum of the rate
function I(w) is attained in the neighborhood of a path closest to the nominal trajectory, that is, in the neighborhood of a
path w∗ with ‖w∗(t) − x(t)‖∞ = K . This is confirmed by theorem 2.3 and associated corollary in chapter 3 of [51].

This reasoning is substantiated in rigorous terms and discussed in detail in [10]. For the remainder of this section, it
shall be assumed that the upper and lower bounds in Eq. (10) coincide and that the rate function attains its minimum on
the set S[0,T]. This simplifies the adaptation of the Freidlin-Wentzell theorem to the suggested control objective in
definition 3 significantly. The log-asymptotic probability in Eq. (8) can now be explicitly stated as

ln
{
Pasxε

({
Cx0

∖
BK

(
x(t); ‖.‖∞

)})}
= lim
ε→0

ε ln
{
Pε

({
Cx0

∖
BK (x(t); ‖.‖∞)

})}
= − min

w∈S[0,T ]∩H1
x0

I(w) . (11)

Equation (11) just repeats the LD principle from definition 1 for sample path LD problems, but it is now fully adapted to
the control objective in definition 3.

Remark 1 The question arises how the limit in Eq. (11) can be reasonably converted into a control task and why the
asymptotic probability is a meaningful measure. There is always uncertainty in realizations that cannot be accounted for
by any control. Yet, the probability of certain deviating sample paths described by the set S decays with an exponential
rate which can be subject to manipulation. The sublimit expression

ln
{
Pasxε (S)

}
≈ −

1
ε

min
w∈S[0,T ]∩H1

x0

I(w)

might not quite be the limiting rate function, but it is the most refined available estimate. The rate function reflects the
sole access point affecting the ‘asymptotical steepness’ of the exit probability. Therefore, maximization of the infimum of

25This is indeed the case despite S[0,T ] being unbounded. As∞ is not a number, sequences whose norms do tend to it are therefore non-convergent
and have no limit in C[0,T ]. Therefore, it can be easily inferred that S[0,T ] is closed since every converging sequence in S[0,T ] ⊂ C[0,T ] with
respect to the supremum norm will have a limiting supremum distance to x(t) in [K ,∞). In particular, the complement of S[0,T ] is just the open ball
BK (x(t); ‖ · ‖∞), hence S[0,T ] must be closed.
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the rate function will be the focus of the suggested design. The terminology might be confusing as I(x) is simply called
‘rate function’ while a more meaningful denomination would be ‘asymptotic rate function’. Note that the exact rate is
derived from

P(w ∈ H1
x0 ) = exp

{
−

1
ε

I(w) + o
( 1
ε

)}
(12)

with additional sublinear terms in w. However, neglecting these sublinear terms in an equal fashion for all possible
trajectories does not affect the successful determination of the optimal path for a large class of system dynamics
b(x(t), u(t), t). Thus, it is a matter of understanding that this does not constitute a limitation to the control design since
the controller still chooses the nominal path relative to the lowest exponential deviation probability.

There are some additional aspects of the Freidlin-Wentzell theorem to be discussed in order to fully provide the
framework for the new control paradigm. The LDP in theorem 1 and 2 relates sample path probabilities to deterministic
analysis and in particular to calculus of variations techniques. The probability measure of the Brownian motion Bt

induces a probability measure Pε on the space of continuous functions Cx0 via the Itō diffusion generated by the
stochastic differential in Eq. (9). By nature, the domain on which the LDP in theorems 1 and 2 is satisfied corresponds to
Cx0 . However, the effective domain DI , i.e. the domain for which the rate function in Eqs. (7) and (25) obtains a value
less than infinity, is only comprised of the Cameron-Martin space H1

x0 .
26 For readers with engineering background

quite some confusion might arise when consulting the referenced literature on the actual function space characterizing
the effective domain. The problem arises from the fact that the classical Wiener space can be extended to an abstract
Wiener space and some literature discusses the Cameron-Martin space in this abstract setting. In addition, diversified
definitions exist for the identical space. For the applications in mind, the classical Wiener space suffices, i.e. the space
of continuous paths. Here, the Cameron-Martin norm becomes the classical Wiener measure andH1

x0 [0,T] coincides
with L2,1

x0 [0,T], the space of all functions f (t) ∈ Rd starting at x0 admitting a first derivative in the Lebesgue space
L2[0,T]. Yet, to be technically precise, this does not require the functions f (t) to be continuously differentiable as
absolute continuity suffices.27
In engineering terms and in spirit of the proof of the Freidlin-Wentzell theorem via polygonal approximations in [10],
it is without loss of generality to interpret H1[0,T] as the space of piecewise differentiable functions on [0,T] with
bounded first derivative. In other words f ∈ H1

x0 [0,T] if f ∈ C1
x0 [0,T] for all but countably many points t ∈ [0,T] and

supt∈[0,T ]{| f ′(t)|} < ∞.28

Remark 2 The space S[0,T] in the MLD control objective of definition 3 has been defined as

S[0,T] =
{
Cx0 [0,T]

∖
BK (x(t); ‖.‖∞)

}
=

{
w ∈ Cx0 [0,T]

��� |w(t) − x(t)| ≥ K for some t ∈ [0,T]} .

But following the previous discussion, the analysis of the rate function in Eqs. (7) and (25) is limited to its effective
domain DI and hence, the Cameron-Martin space H1

x0 . The infimum of the rate function is therefore sought on the
space S[0,T] ∩H1

x0 . In order to avoid excessive notation by consistently denoting the intersection whenever the infimum
of the rate function is concerned in the remainder of this study, the space S of Eq. (8) could be redefined as

S[0,T] =
{
H1

x0 [0,T]
∖
BK (x(t); ‖.‖∞)

}
=

{
w ∈ H1

x0 [0,T]
��� |w(t) − x(t)| ≥ K for some t ∈ [0,T]}

for ease of notation. Yet, this would create another excessive notation issue for the considerations in sections VI.D.
Therefore, it is assumed without loss of generality for the remainder of this study, that the value∞ is assigned to the rate
functional I(w) for all w ∈ {Cx0\H

1
x0 }[0,T] without explicit statement.

Note that in order to arrive at the underlying stochastic differential in Eq. (9) Itō calculus has to be applied. However,
differential and integral terms based on the rate function are subject to ordinary differential calculus. This is yet another
great advantage of the LD approach to statistical control problems.

26The Cameron-Martin space corresponds to the functions in Cx0 with finite energy. Therefore, it is rather obvious statement that the asymptotic
probability of sample paths with infinite energy tends to zero.

27This can be seen from the proof of lower-semicontinuity of the rate function in Schilder’s theorem in [10] where absolute continuity was required
and established in order to apply the fundamental theorem of Lebesgue integral calculus. There, the fact has been used that f (t) being absolute
continuous is equivalent to f (t) having a Lebesgue integrable derivative almost everywhere.

28Note that the following inclusion holds on a closed interval of the real line: L∞ ⊆ L2 ⊆ L1.
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C. Boundedness of the Domain
With an impending implementation of an optimization scheme in mind, the subspace expressed in Eq. (8) reveals

itself to be a highly unfavorable choice as it defines an unbounded domain in Cx0 . Therefore, it might be tempting to
regard the complementary problem by maximizing the probability of a sample path to remain within the defined channel
around the mean, i.e. maximizing

Pasxε (S
c) = Pasxε

(
BK

(
x(t); ‖.‖∞

)
⊂ Cx0

)
. (13)

This would require, in terms of theorem 2, to find a nominal path such that the infimum of the rate function over the
subspace BK (x(t); ‖.‖∞) is minimized. However, this standard technique from probability calculus would constitute a
major mistake in the context of asymptotic probabilities: LD theory simply yields the law of the large number as soon
as the mean path is an element of the space over which the infimum is sought. The rate function attains its minimum of
zero exactly at the nominal path. This property of the rate function is proven for sequences of i.i.d. random variables as
well as illustrated in detail for one-dimensional Brownian motion using Schilder’s theorem in [10].

D. Transformation of the Unbounded Domain
The space S ∈ Cx0 [0,T] of Eq. (8) over which the infimum is sought, constitutes an ill-conditioned, unbounded

functional domain not suitable for an optimization task. It can neither be converted into a simple set D ∈ Rd with
w(t) ∈ D for all t ∈ [0,T] nor into a time-varying set D(t) ∈ Rd with w(t) ∈ D(t). Therefore, any application of calculus
of variations is prevented. The question arises if the problem can be reformulated in order to make it suitable for an
optimization technique, be it numerically or analytically. The considerations in this section are an essential contribution
of the presented work as they specify the minimization over the semi-bounded and ill-conditioned function space
S ⊂ Cx0 [0,T]29 in terms of a sequence of two-point boundary value problems. These are expressed via a parametrized,
bounded and closed function space Sτ[0, τ] ∈ H1[0, τ] with parameter τ ∈ [0,T]. The set S in definition 3 has been
given as

S[0,T] =
{
w ∈ Cx0 [0,T]

��� sup
0≤t≤T

|w(t) − x(t)| ≥ K
}

where x(t) is the nominal path resulting from the unperturbed version of the stochastic differential equation (9),
i.e. limε→∞ xε(t) = x(t). Now, it is assumed that the infimum of the rate function is actually attained by a path
w∗(t) ∈ {S[0,T] ∩ H1

x0 [0,T]}, yielding
inf

w∈S[0,T ]
I(w) = I(w∗) .

As w ∈ S ⊂ Cx0 [0,T], every w(t) is continuous and therefore, w(τ) = K has to hold for at least one τ ∈ [0,T]. This
allows to define the set of functionW ′ with its members w′(t) ∈ W ′ depicted in Figure 3 and given by

w′(t) =

{
w∗(t) for 0 ≤ t ≤ t1

w(t) ∈ Cw∗(t1)(t1,T) for t1 < t ≤ T
. (14)

The functions w′(t) coincide with the optimal trajectory w∗(t) on [0, t1] and are arbitrary continuous functions
with w′(t1) = w∗(t1) for [t1,T]. Note that w∗(t1) = x(t1) ± K . Furthermore, note carefully that w′(t) ∈ S[0,T] as
w∗(t) ∈ S[0, t1] and

S′[0,T] ≡
{
S[0, t1] ∪ Cw∗(t1)[t1,T]

}
⊆ S[0,T] .

Then, the rate function in Eq. (7) evaluated at any w′(t) can be expressed as

I(w′) =
1
2

∫ t1

0

 Ûw′(t) − b
(
w′(t),u(t)

)2 dt +
1
2

∫ T

t1

 Ûw′(t) − b
(
w′(t),u(t)

)2 dt .

Now, with w∗(t) ∈ S′[0,T], the infimum can be expanded in

inf
w∈S[0,T ]

I(w) = inf
w∈S′[0,T ]

I(w) = inf
w∈S[0,t1]

1
2

∫ ti

0

 Ûw(t) − b
(
w(t),u(t)

)2 dt

+ inf
w∈Cw∗(t1)[t1 ,T ]

1
2

∫ T

t1

 Ûw(t) − b
(
w(t),u(t)

)2 dt . (15)

29See remark 2 on considering the subspace of S[0,T ] which is in H1
x0 .
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Fig. 3 Examples for Deviation Paths w′(t) in Eq. (14)

But in the interval [t1,T], the infimum is taken over any function w ∈ {Cw∗(t1) ∩H
1} which includes the solution x(t)

to the ordinary differential equation emerging from the unperturbed limit of the Itō diffusion in Eq. (9) with initial
condition xKt1 = x(t1) ± K , i.e.

w(t) = xKt1 ± K +
∫ t

t1

b(w(t),u(τ), τ)dτ

where t ∈ [t1,T]. Hence, the contribution of the second integral in Eq. (15) yields

inf
w∈H′

xKt1
[t1 ,T ]

1
2

∫ T

t1

 Ûw(t) − b
(
w(t),u(t)

)
‖2 dt = 0

without loss of generality. Now, this allows for the following statement being equivalent to the infimum of the rate
function in Eq. (7) over the set S of definition 3:

inf
w∈S[0,T ]

1
2

∫ T

0
‖ Ûw(t) − b

(
w(t),u(t)

)
‖2 dt = min

τ∈[0,T ]
inf

w∈Sτ [0,τ]

1
2

∫ τ

0

 Ûw(t) − b
(
w(t),u(t)

)2 dt (16)

where the set Sτ[0, τ] is defined as

Sτ[0, τ] :=
{
w ∈ Cx0 [0, τ]

�� w(0) = x0, |w(τ) − x(τ)| = K
}
. (17)

Hence, the ill-conditioned, unbounded original minimization problem can be expressed as the minimization over a set
of well-conditioned two-point boundary value problems.

E. The Large Deviation Control Problem Statement
The preliminary analysis and considerations in the preceding sections allows for a precise MLD control statement.

It shall be noted that merely finding the one nominal path with the lowest asymptotic probability of deviation is hardly
ever a suitable control task. On the contrary, the overall control objective will in almost all situations be related to
a deterministic control task and/or contain additional constraints. These underlying tasks will often include but are
not limited to standard optimal control statements. For the general MLD control statement, let xε(t) be a scaled Itō
diffusion process as in theorem 2 with all provisions of definition 4. Then, the newly suggested problem statement reads
as follows:30

30This is the multidimensional version of the control statement with Ki indicating individual bounds for each state xi (t), i = 1 . . . n.
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Control Problem 1 (General MLD Control)

Minimize J(u) = lim
ε→0

ε ln
{
P (Su)

}
= − inf

{
Iu(w)

�� w ∈ Su ∩H1
x0

}
subject to dxε(t) = b

(
xε(t), u(t), t

)
dt +
√
ε G

(
x(t), t

)
dBt

x ∈ X[0,T] ⊆ C1
x0 [0,T]

over all u ∈ U[0,T]
with xε(0) = x(0) = x0

ε > 0

where Su :=
{
w ∈ Cx0 [0,T]

�� ‖wi(t) − xi(t)‖∞ ≥ Ki for t ∈ [0,T]
}

Iu(w) =
1
2

∫ T

0

 Ûw(t) − b
(
w(t), u(t), t

)2
a−1(w(t),t)

dt

x(t) = x0 +

∫ t

0
b
(
x(τ), u(τ), τ

)
dτ

a−1 (w(t), t) = [
GGT

]−1 (
w(t), t

)e(t)2
A(t)
=

〈
A(t)e(t), e(t)

〉
.

Note that the validity of statement 1 is, in general, limited to the existence of [GGT ]−1. In control statement 1, the spaces
X[0,T] andU[0,T] allow to incorporate any additional constraints, arising from design restrictions or superordinate
other control requirements. Now, it shall be assumed that another control task is already given for the underlying
deterministic differential equation system in the form of an optimal control principle, i.e. minimizing a certain objective
function. For the states being generated by the diffusion process xε(t), this deterministic performance index becomes a
stochastic process itself. There are different possibilities to incorporate the stochastic dependence into the cost function.
Several exemplary ways of absorbing the underlying deterministic control task into the Freidlin-Wentzell based control
paradigm can be stated via augmented objective functions. A simple idea for the inclusion challenge would be the
additive combination of the superordinate deterministic performance index and of the asymptotic exit probability in
a modified MLD cost function. Therefore, a weighted sum could be formed as shown in [10]. In this formulation,
additional constraints could again be included via the choices of X and U. However, a different incorporation of a
deterministic cost function is possible by taking inspiration from Sain’s method in MCV control (see section III): A
certain amount of slack in the performance index is allowed to define admissible state and control spaces, X[0,T]
andU[0,T], over which the asymptotic probability of deviation from the nominal path is then minimized. The mean
performance index is constrained by an upper limit D > Dmin, where Dmin can be chosen to either correspond to the
deterministic optimal control cost or to the minimum average performance. This suggested approach is by no means
exhaustive, but represents a method which is deemed most appropriate. The following statement embodies the idea:
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Control Problem 2 (Cost Constrained MLD Control)

Minimize J(u) = lim
ε→0

ε ln
{
P (Su)

}
= − inf

{
Iu(w)

�� w ∈ Su ∩H1
x0

}
subject to dxε(t) = b

(
xε(t), u(t), t

)
dt +
√
ε G

(
x(t), t

)
dBt

over all u ∈ U =

{
u :

[
θ
(
x(T), u(T)

)
+

∫ T

0
φ
(
x(t), u(t), t

)
dt

]
≤ D

}
with xε(0) = x(0) = x0

ε > 0

where Su :=
{
w ∈ Cx0 [0,T]

�� ‖wi(t) − xi(t)‖∞ ≥ Ki for t ∈ [0,T]
}

Iu(w) =
1
2

∫ T

0

 Ûw(t) − b
(
w(t), u(t), t

)2
a−1(w(t),t)

dt

x(t) = x0 +

∫ t

0
b
(
x(τ), u(τ), τ

)
dτ

D > min
u′(t)

{
E

{
θ
(
xε(T), u

′(T)
)
+

∫ T

0
φ
(
xε(t), u′(t)

)
dt

}}
= Dmin

a−1 (w(t), t) = [
GGT

]−1 (
w(t), t

)e(t)2
A(t)
=

〈
A(t)e(t), e(t)

〉
.

Yet, another variation of cost constrained MLD control can be achieved if the dynamics of the accumulated total cost
are expressed by a stochastic differential depending on the perturbed state trajectory. Then, an augmented SDE system
can be formed. This is a quite appealing way of handling the cost constrained MLD problem, however its derivation is
rather involved and left for future publication. Note that in all these variations, the original objective function does not
necessarily need to be formulated as a mean minimization. On the contrary, the Freidlin-Wentzell theory in theorems 1
and 2 characterizes deviations from the strong solution of the unperturbed ODE and not from the mean process.

VII. Numerical Evaluation of MLD Control
This section provides an initial numerical evaluation of MLD control as suggested in statements 1 and 2. Before two

nonlinear examples are considered, applied evaluation metrics and difficulties to be expected from numerical simulation
are discussed.

A. Evaluation Criteria
Two integration schemes are most often employed for the simulation of SDEs: the Euler-Maruyama method and

the Milstein scheme. Both produce linear polygonal approximations of the process, xε,δ(t). If it is of importance that
the numerical solution xε,δ(t) reflects path properties, i.e. if the whole path plays a role in further analysis, numerical
schemes with strong convergence should be considered. If, on the other hand, the focus is on path independent quantities,
then weakly convergent schemes reflect the point dependent properties well. The Euler-Maruyama method converges
strongly and weakly if b(·) and G(·) are four times continuous differentiable with bounded first derivatives and if both
functions do not grow too fast.31 The Milstein scheme exhibits strong convergence of order 1. However, the presented
numerical examples in this section all exhibit state-independent noise terms such that the Euler-Maruyana and Milstein
methods coincide.

As this study of the newly suggested control paradigm considers asymptotic probabilities, it has to be discussed if
the numerical integration schemes properly reflect the desired quantities. Strong convergence might guarantee that
certain path properties are reflected by the approximation scheme, but only in the expectation sense. Most existing
integration schemes for SDEs do not converge in probability. Therefore, difficulties are to be expected if empirical
probabilities on SDE sample paths generated by the above numerical methods are employed as statistical performance
measures. Caution is advised when immediate conclusions on probability distributions are drawn from numerically
generated SDE realizations. For a more detailed account on numerical integration of SDEs, it is referred to the subject

31This requirement should be satisfied by the Lipschitz continuity demanded earlier.
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primers by Higham in [54] and by Malham et al. in [55]. A standard reference for the topic [56] by Kloeden et al. while
Iacus treats the subject with equal detail in [57]. A more thorough discussion on the issues to be expected in context
with the new control paradigm can be found in [10] (including the slow speed of convergence for empirical probabilities
based on Brownian motion and the striking efficiency of Schilder’s theorem).

We will now briefly discuss the metrics applied to the numerical examples. In the motivating example of section
IV.B, the sample probability for exceeding a certain bound K has been employed. But the choice of the particular
channel width was an arbitrary design parameter. The choice of this bound is not so trivial as it might appear at first:
Too low of a bound creates difficulties with a standard Monte Carlo simulation32 as almost all paths will exceed the
bound. Any bound in the magnitude of the noise variance becomes meaningless as the exit probability will simply
converge to the probability distribution of a Gaussian random variable. Too large of a channel width might prohibit a
meaningful interpretation as only few paths will exceed its bounds for any control, unless some advanced simulation
technique employing, for instance, boosted SDEs is utilized. Thus, the choice of K for evaluation purposes has to be
adapted to the specific problem noise level at hand and needs to be regarded with caution.

Additional measures can also be utilized. In section VI.D, the most probable exit time, i.e. the time at which the
infimal deviation − with respect to the effective action − exceeds K for the first time, has been discussed repeatedly.
For simplicity, this time shall be denominated simply as first exit for the remainder of this section. As Jτ[0, τ] will
reach its minimum at the first exit, it can be predicted by the new control paradigm and therefore might be a suitable
parameter for evaluation. However, it suffers from the same lack of convergence in terms of numerical integration of
SDEs as the exit probability. The lower the bound K is chosen the sooner the first exit will appear.33 In addition, the
numerical determination of empirical probabilities, and thus of the exit probability, creates further challenges. The time
domain has to be clustered into intervals of size larger than the integration step size in order to compute an empirical
distribution. Then, the number of exit occurrences per interval is simply counted, and the result can be depicted using a
histogram. The first exit is then assigned to the interval of highest count. Yet, due to the properties of numerical SDE
integration, this empirical first exit distribution will always be tilted to the left.

As the direct empirical determination of the exit time by Monte Carlo methods emerges to be unreliable, different
additional measures - based on expectations or averages - for the prediction accuracy of the new control paradigm have to
be selected. The average error at each time t over all Monte Carlo iterations has been deemed to be a highly effective and
very useful metric. Since it results from an expectation operation, convergence with respect to the employed numerical
technique is guaranteed. The average error directly reflects the deviation probability at each point in time t. In addition,
the accumulated average error, i.e. the integral over the average error curve, serves as a measure of the total deviation
probability in the time interval [0,T]. The first exit, i.e. the most probable exit time, corresponds to the occurrence of
the maximum average error. This is a stable criterion which is independent from the arbitrary choice of the exceedance
level K .

The average error allows for two additional metrics which are employed for evaluation in this chapter: The maximum
average error and the area under the average error curve which is designated as the cumulative or accumulated average
error. These two metrics effectively allow comparison of trajectories in terms of worst case behavior (maximum average
error) and overall deviation potential (cumulative average error).

Finally, five additional quantities are calculated where applicable: the mean cost for the quadratic cost criterion, the
cost variance and the deterministic cost associated with the nominal path. The average maximum error and the most
probable occurrence of the maximum error are likewise provided. Yet, the latter measures have to be regarded with
great care. Again due to the convergence properties of numerical schemes for SDEs, the maximum error will appear
at the very last time interval for the majority of realizations, not reflecting the true result.34 The deviation from the
nominal path is denoted as eε(t) = |xuε (t) − xu(t)|.

32This refers to Monte Carlo methods which are not based on importance sampling or boosted SDEs.
33To give an extreme example, if the bound K is selected to be zero, the first exit in a polygonal approximation will always occur after the first

sampling interval when a Gaussian random disturbance is applied.
34This can be substantiated by considering the probability mass associated with it. Empirical distributions are determined based on the probability

mass in finite intervals and not at singular points. A single point of a continuous distribution has zero probability mass which is clearly not reflected
by the numerical integration scheme. It is tempting to use a fine sampling grid when constructing histograms based on large scale Monte Carlo
evaluations. A such constructed histogram is often thought to resemble a probability density function. Yet, this is a misleading approach as it is not
the number of Monte Carlo evaluations that determines a meaningful grid but the step size of the numerical integration technique. As there is no
probability mass associated with the final time peak, it quickly vanishes for an increasingly coarse grid.
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B. Scalar Nonlinear MLD Example
In order to develop a first idea for LPD in general, the scalar nonlinear example in Eq. (4) of section IV.B is employed

again, i.e.
dxε(t) =

[
x2(t) − 1 + u(t)

]
dt +
√
ε dBt . (18)

Four possible trajectories from initial condition −1 to final condition 1 have been explored in section IV.B by comparing
the associated deviation probabilities arising from Monte Carlo simulation as given in Table 1. Now, the problem is
revisited when the optimal control u∗(t) and corresponding trajectory x∗(t) are computed according to the new control
paradigm. This system has been selected in particular as it exhibits a nontrivial nonlinear structure, but yet provides
intuitive access. As discussed previously, lower deviation probability is related to the time which the particular nominal
trajectory spends in a region with high energy dissipation. Thus, more ‘effort’ is required by the disturbance to create
a deviation. With this explanation in mind, an optimal nominal trajectory minimizing the deviation potential should
stay as long as possible in the most dissipative area. Certainly, this would result in an unbounded control effort for the
system in question. For the minimization task at hand, the control is therefore confined to an area between upper and
lower bounds of ±5. Now, the optimal law subject to this bound and subject to the initial condition of x0 = −1 as well as
the final condition of xT = 1 is determined according to the MLD criterion and depicted in Figure 4.
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Fig. 4 Optimal MDP Control for Ûx(t) = x(t)2 − 1 + u(t), x0 = −1, xT = 1

The control exhibits precisely the anticipated behavior as the maximum control effort is provided to move the
trajectory in the most dissipative area. The lowest possible value of the state x(t) is maintained until exactly the point in
time is arrived at, from which the final constraint is lastly reachable given the bounds on control. In that sense, the
numerical determination of the MLD control can be deemed as successful.

For comparison, the average error for the four control laws from −1 to 1 in Eq. (5) is shown in Figure 5(a). In
addition, the optimal MLD trajectory from 1 to −1 for the problem in Eq. (18) is calculated and depicted in Figure
5(b). The maximum value of the associated average error resulting from M = 106 Monte Carlo evaluations appears at
t = 0.3325 corresponding almost precisely to the first exit at t = 0.3350 as predicted by the new controller. Table 2
supplies the introduced statistical measures for the nonlinear scalar problem in Eq. (18) and for each of the control
trajectories in Eq. (5) in comparison to the optimal LPD trajectory.

C. Cost Constrained MLD control
In this section, the Cost Constrained MLD controller, as detailed in statement 2, is computed for two example

problems: The scalar quadratic system in Eq. (18) and the two-dimensional nonlinear Duffing oscillator. Both systems
exhibit strong nonlinear behavior. The starting points for the cost constraints are the minimum deterministic quadratic
costs achieved by the corresponding optimal controller for the non-perturbed system arising from ε → 0. The
deterministic optimal control emerges as the solution to a nonlinear two-point boundary value problem. Every simulation
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(a) Average Error for the Different Control Laws with Noise Level
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(b) Optimal MDP Control for x0 = −1, xT = 1

Fig. 5 Control Strategies for Eq. (5), Ûx(t) = x(t)2 − 1 + u(t), with x(0) = −1 and x(5) = 1

Table 2 Statistical Evaluation of Optimal LPD Control and Control Laws in Eq. (5) for Ûx(t) = x2(t) − 1 + u(t)

Simulation Run
u1(t) u2(t) u3(t) u4(t) u∗(t)

Simulation Parameter
Initial Value, x0 -1
Final Value, xT 1
Final Time, T 2.5

No. of Control Inputs, NC 50
No. of Integration Steps, NI 5 · 103

Noise Level,
√
ε 0.05

No. of Monte Carlo Evaluations, M 105

Channel Width, K 0.06
Statistical Analysis

Cum. Avg. Err.:
∫
E{eε} 0.1320 0.1151 0.0497 ∞ 0.0321

Occurr. of Max. Avg. Err.: t(max E{eε}) 2.500 2.500 2.500 1.6905 2.500
Max. Avg. Err.: max E{eε} 0.2280 0.1626 0.0386 ∞ 0.0155

Occurr. of Max. Err.: t(max{eε}) 2.4875 2.4875 2.4875 2.4875 2.4875
Avg. of Max. Err.: E{max{eε}} 0.2355 0.1732 0.0633 ∞ 0.0435

Occurr. of Max. Err. for e ≥ K: t(max{eε ≥ K}) 2.4875 2.4875 2.4875 2.4875 2.4875
First Exit Time for e ≥ K: τe≥K 1.6375 1.6875 2.4875 0.5375 2.4875

% of Paths Exceeding Limit: PS{eε ≥ K} 90.42 88.63 49.07 98.747 3.49
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follows a continuous-discrete interpretation of the underlying system, i.e. the control is applied in a sample-and-hold
manner at NC = 50 different points in the time interval. The statistical analysis is based on NI = 5 · 103 integration
steps in order to generate the sample paths for the M Monte Carlo simulations. The noise level

√
ε, the channel width K

as well as the initial and final conditions are specified individually for each example.

1. Scalar Example: Quadratic System
Again, the nonlinear quadratic system is considered generated by the associated scaled Itō diffusion process

dxε(t) = [x2
ε(t) − 1 + u(t)] dt +

√
ε dBt , xε(0) = 2 (19)

where Bt denotes Brownian motion with unit variance. The scaling parameter
√
ε is utilized to adapt for different noise

levels. The deterministic quadratic cost criterion is given as

D(u) =
∫ T

0
φ
(
x(t),u(t), t

)
dt =

∫ T

0

[
qx2(t) + ru2(t)

]
dt

where q = 10 and r = 1 are selected. The emerging optimal control law, the associated optimal deterministic trajectory
as well as the costate minimizing the quadratic cost function are shown in Figure 6. In addition, this figure illustrates
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Fig. 6 Optimal Deterministic Control for Eq. (19)

the applied sample-and-hold control and the cumulated cost. The minimal deterministic performance index for the
sample-and-hold control is calculated as Dmin = 16.46. Now, three control strategies are computed according to
statement 2 to determine the Cost Constrained MLD control. Thereby, the maximum allowed deterministic cost for the
ε → 0 limit is given by [1.3 · Dmin], [1.5 · Dmin] and [2.0 · Dmin], respectively. The corresponding optimal MLD control
laws shall be denoted by CCMLD13, CCMLD15 and CCMLD20 for the remainder of text while OPTDET is assigned
to the optimal deterministic control. Figure 7 depicts the resulting optimal CCMLD13 control law u∗(t), the associated
optimal trajectory x∗(t) and the predicted most probable exit time τmin. The statistical metrics as discussed in section
VII.B are determined for each controller and are summarized in Table 3 together with the simulation parameters.
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Fig. 7 Optimal LPD Control and Trajectory for Eq. (19) with D ≤ [1.3 · Dmin]

Table 3 Statistical Evaluation Constrained LPD for Ûx(t) = x2(t) − 1 + u(t)

Simulation Run
OPTDET CCLPD13 CCLPD15 CCLPD20

Simulation Parameter
Initial Value, x0 2
Final Time, T 2.5

No. of Control Inputs, NC 50
No. of Integration Steps, NI 5 · 103

Noise Level,
√
ε 0.05

No. of Monte Carlo Evaluations, M 106

Channel Width, K 0.1
Control Parameter

State Weight for Cost Funct., q 10
Control Weight for Cost Funct., r 1

Pred. First Exit, τmin 0.945 0.910 0.880
Determ. Cost, Dmin 16.2373 21.3763 24.6792 32.9208
Statistical Analysis
Mean Cost: E{D} 16.4247 21.3915 24.6894 32.9267

Cost Variance: Var{D} 0.3163 0.3150 0.3732 0.4400
Cum. Avg. Err.:

∫
E{eε} 0.1641 0.0932 0.088 0.0845

Occurr. of Max. Avg. Err.: t(max E{eε}) 2.1805 0.9315 0.8945 0.8540
Max. Avg. Err.: max E{eε} 0.0874 0.0496 0.0486 0.0478

Occur. of Max. Err.: t(max{eε}) 2.4875 0.7875 0.7875 0.7875
Avg. of Max. Err.: E{max{eε}} 0.1287 0.0869 0.0849 0.0830

Occurr. of Max Err. for e ≥ K: t(max{eε ≥ K}) 2.4875 08625 0.8125 0.8625
First Exit Time for e ≥ K: τe≥K 0.5375 0.4875 0.4875 0.4875

% of Paths Exceeding Limit: PS{eε ≥ K} 59.1362 28.9182 26.8575 25.1233
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D. Multivariate Example: Duffing Oscillator
Now, a multivariate example is considered via the nonlinear Duffing oscillator. For parameters α = 1, β = −0.1 and

γ = 0.25, the scaled Itō diffusion process is generated by[
dxε,1(t)
dxε,2(t)

]
=

[ [
xε,2(t)

−αxε,2(t) − βxε,1(t) − γx3
ε,1(t)

]
+

[
0
1

]
u(t)

]
dt +

[
0
1

]
dBt (20)

where Bt denotes Brownian motion with unit variance. The scaling parameter
√
ε is utilized to adapt for different noise

levels. The deterministic quadratic cost criterion is given as

D(u) =
∫ T

0
φ
(
x(t),u(t), t

)
dt =

∫ T

0

[
q1x2

1(t) + q2x2
2(t) + ru2(t)

]
dt

where q1 = q2 = 10 and r = 1 is selected. The resulting optimal control law (see [10] for further details), the associated
optimal deterministic trajectory as well as the costate minimizing the quadratic cost function are shown in Figure
8(a). In addition, Figure 8(b) illustrates the applied sample-and-hold control and the cumulated cost. The minimal
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Fig. 8 Optimal Deterministic Control for Eq. (20)

deterministic cost for the sample-and-hold control is calculated as Dmin = 21.69. Again, three control strategies are
computed according to statement 2 to determine the Cost Constrained MLD control. As before, the maximum allowed
deterministic cost for the ε → 0 limit is given by 1.3 · Dmin, 1.5 · Dmin and 2.0 · Dmin, respectively. Figure 9 depicts
the resulting optimal control law u∗(t) for the CCMLD20 case as well as the associated optimal trajectory x∗(t) and
the predicted most probable exit time τmin. Once more, the statistical measures as discussed are determined for each
controller and are summarized in Table 4 together with the simulation parameters. As before, amplified average deviation
bounds around the nominal paths are shown as well as the average error with a marked maximum value.

VIII. Conclusion
A new comprehensive approach to statistical control based on a functional interpretation of stochastic processes

over the space of sample paths has been presented. In contrast to earlier development, the probability of realizations
to deviate from the deterministic solution is addressed directly. This is enabled by the creation of a formal control
framework embedding LD techniques and, in particular, the Freidlin-Wentzell theory. The account does not only include
the precise definition of a control objective, but also comprises a discussion of the adaptation of the Freidlin-Wentzell
theorem to the particular situation. The suggested objective consists of two nested minimization tasks necessary to
arrive at the desired control. Thereby, the domain of interest is identified as being of ill-conditioned nature with respect
to standard optimization techniques. A necessary transformation of the inner minimization task over an unbounded
domain into a sequential minimization of parametrized well-conditioned function spaces − which can be expressed as
subsets of Rd − is presented. Subsequently, formal control statements are established building the basis of Minimum
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Table 4 Statistical Evaluation Constrained LPD for Duffing Oscillator in Eq. (20)

Simulation Run
OPTDET CCLPD13 CCLPD15 CCLPD20

Simulation Parameter
Initial Value, x1,0 1
Initial Value, x2,0 1
Final Time, T 2.5

No. of Control Inputs, NC 50
No. of Integration Steps, NI 5 · 103

Noise Level,
√
ε 0.01

No. of Monte Carlo Evaluations, M 105

Channel Width, K 0.018
Control Parameter

State Weight for Cost Funct., q1 10
State Weight for Cost Funct., q2 10
Control Weight for Cost Funct., r 1
Predicted First Exit Time, τmin 2.5000 2.5000 2.5000

Determ. Cost, Dmin 21.5824 28.1458 32.4990 43.3657
Statistical Analysis
Mean Cost: E{D} 21.5839 28.1464 32.4995 43.3659

Cost Variance: Var{D} 0.0022 0.0326 0.0449 0.0651
Cum. Avg. Err.:

∫
E{eε,1} 0.0099 0.0092 0.0089 0.0085

Cum. Avg. Err.:
∫
E{eε,2} 0.0121 0.0115 0.0114 0.0113

Occurr. of Max. Avg. Err.: t(max E{eε,1}) 2.5000 2.5000 2.5000 2.5000
Occurr. of Max. Avg. Err.: t(max E{eε,2}) 2.4730 1.9480 2.4990 2.5000

Max. Avg. Err.: max E{eε,1} 0.0081 0.0067 0.0063 0.0055
Max. Avg. Err.: max E{eε,2} 0.0056 0.0051 0.0051 0.0051

Occurr. of Max. Err.: t(max{eε}) 2.4875 2.4875 24875 2.4875
Avg. of Max. Err.: E{max{eε}} 0.0137 0.0132 0.0131 0.0130

Occurr. of Max. Err. for e ≥ K: t(max{eε ≥ K}) 2.4875 2.4875 2.4875 2.4875
First Exit Time for e ≥ K: τe≥K 2.4125 2.4625 2.2875 2.4875

% of Paths Exceeding Limit: PS{eε ≥ K} 13.92 9.85 8.98 8.49
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Fig. 9 Optimal LPD Control and Trajectory for Eq. (20) with D ≤ [2.0 · Dmin]

Large Deviations (MLD) control. This study represents the first work of its kind in a new control design which is,
by nature, still in its infancy. A stochastic control paradigm for general nonlinear systems is enabled. The suggested
structure has revealed a significant potential for expansion beyond the ideas in this work and allows for adaptation
to a great variety of related problems. In addition, the significant paradigm shift (with respect to traditional control
engineering) by moving from point-in-time statistics to sample path statistics replaces the previously necessary spatial
integrals with time integrals, thus relieving the control design from the curse of dimensionality. An initial numerical
evaluation of MLD control and Cost Constrained MLD indicates the successful control design while expected numerical
issues with the simulation of SDEs are briefly discussed.

This work does not address the efficient numerical solution of the control problems in statements 1 and 2. The
nested character of the required optimizations renders this a formidable, computationally expensive challenge. The
minimization of the inner loop, i.e. the determination of the minimum of the rate function for a nominal path emerging
from a particular control input, in statements 1 and 2 can be identified as the key factor in the success of the new control
paradigm and its applicability. Therefore, the need for a closed-form performance index reflecting the infimum of the
rate function is the necessary next step in future development. This closed form perfomance index should allow for
extension to systems subject to state-dependent noise and to systems of high order.

Appendix
Definition 4 (Itō Diffusion Process) Let (Ω,F , {Ft }t≥t0,P) denote the proper defined complete filtered probability
space, i.e. containing the sample space Ω, a σ-field F consisting of subsets of Ω such that (Ω,F ) is a measurable
space with associated measure P called probability. {Ft }t≥0 is a collection of nested sub-σ-fields, called a filtration,
providing the notion of time-dependent information. The filtration {Ft }t≥0 is adapted to the Brownian motion Bt by
construction. Then, the non-anticipating process {x(t)} is called an Itō diffusion process generated by the stochastic
differential equation

dx(ω, t) = b
(
x(ω, t), u(t), t

)
dt + G

(
x(ω, t), t

)
dBt, x(t0) = x0 (21)

where x : Ω × [0,T] → Rn is the stochastic system state, b : Rn × Rm × [0,T] → Rn a deterministic vector function,
u : [0,T] → Rm the control input, G : Rn × [0,T] → Rn×q the noise gain matrix, and Bt : Ω × [0,T] → Rq a unit
variance Brownian motion. Equation (21) is the symbolic notation of

x(ω, t) = x0 +

∫ t

0
b
(
x(ω, t), u(t), t

)
dτ +

∫ t

0
G

(
x(ω, t), t

)
dBt . (22)
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Theorem 2 (Full Freidlin-Wentzell Theorem) Given the provisions of definition 4, then, the Itō diffusion process
{xε(t)} is the unique solution of the stochastic differential equation

dxε(t) = b
(
xε(t), t

)
dt +
√
ε G

(
xε(t), t

)
dBt , xε(0) = x0 (23)

for all t ∈ [0,T], where xε : Ω × [0,T] → Rn is deterministic, b : Rn × [0,T] → Rn is uniformly Lipschitz continuous
in xε and continuous in t, all the elements of the diffusion matrix G are bounded, uniformly Lipschitz continuous in xε
and continuous in t, and Bt is a standard Brownian motion in Rq . The existence and uniqueness of the strong solution
{xε(t)} is standard. Then, {xε(t)}, the solution of the above Itō process, satisfies an LDP according to definition 1 in
Cx0 [0,T]) with the good rate function

Ix0 (w) = inf
{g∈H1: w(t)=x0+

∫ t

0 b(w(s),s)ds+
∫ t

0 G(w(s),s) Ûg(s)ds

1
2

∫ t

0
| Ûg(t)|2dt, (24)

where the infimum over an empty set is taken as +∞, and | · | denotes both the usual Euclidean norm on Rd and the
corresponding operator norm of matrices. The spacesH1 and L2 for Rn-valued functions are defined using this norm.
For G(·, ·) being a square matrix and for nonsingular diffusions, the term a(xε, t) = G(xε, t)GT (xε, t) is uniformly
positive definite and bounded. Thus, a−1(·, ·) exists and is bounded, such that the rate function in Eq.(24) can be stated
in compact form as

Ix0 (w) =
1
2

∫ T

0

[
Ûw(t) − b

(
w(t), t

) ]T
a−1 (w(t), t) [ Ûw(t) − b

(
w(t), t

) ]
dt

for w ∈ H1
x0 [0,T], and

Ix0 (w) =∞

for w < H1
x0 [0,T] . (25)
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