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RESIDENT SPACE OBJECT SHAPE AND MATERIAL
ESTIMATION USING POLARIMETRIC DATA

Andrew T. Swenson,* Christopher K. Nebelecky,† Daniel Wilkinson,‡ and
John L. Crassidis§

The utility of polarized light curves to ascertain space object material and shape
properties is demonstrated. Passively collected light curves are a fundamental byprod-
uct of electro-optical sensing and are abundantly available. Previous work has demon-
strated that considering of the polarization of these light curves yields observable
information regarding the material properties of the observed object. This paper
expands that approach to incorporate shape properties of the space object. The ap-
proach uses a model-driven approached based on multiple-model adaptive estimation
as the underlying framework. A simulation-based validation of the approach indicate
that both shape and material properties are recoverable.

INTRODUCTION

A key area to improved space domain awareness (SDA) is being able to characterize attributes of
space objects (SOs) beyond just an object’s orbit and ballistic coefficient. Of specific interest are the
object’s shape, attitude, surface properties, including surface materials, spin state, etc. All of these
attributes can influence an object’s orbit through the manifestation of non-conservative effects such
as drag and solar radiation pressure. Further, these attributes can be insightful when assessing the
structure, composition and capabilities of an SO. For large objects in low-Earth orbit, methods such
as resolved imaging or radar cross-sectioning can be used to provide information about an object’s
shape or attitude. However, objects in higher orbits, such as geosynchronous orbit (GEO), are too
distant for these methods to be effective using ground-based sensors.

Light curve data are the time-varying sensor wavelength-dependent apparent magnitude of energy
(i.e. photons) scattered (reflected) off of an object along the line-of-sight to an observer. There are
several aspects of using light curve data (temporal photometry) that make it particularly advanta-
geous for object detection, identification and tracking. Because the apparent magnitude of the SO is
a function of its size, orientation, and surface material properties, one or more of these characteris-
tics should be recoverable from the photometric data. This can aid in the detection and identification
of an SO after a catalog of spacecraft data with material properties, shape, and other attributes is
developed. This may also prove to be powerful for never-seen-before objects or distant objects such
as those in GEO and beyond.
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Reference [1] first demonstrated the benefit of light curves to enhance SDA by its ability to enable
attitude estimation of the SO. That work assumed that all attributes, such as shape and material
properties, are well known. Their approach was extended to include combined orbit, attitude and
surface parameters by combining astrometric (angles) and photometric (light curve) data.2 However,
significant difficulties must be overcome before light curve information can be utilized effectively.
In particular, the measurement model is characterized by a high degree of non-linearity and there
exists the distinct possibility for information dilution without sufficient observations. Multiple-
model approaches were introduced to alleviate some of the difficulties. Reference [3] developed
an approach to simultaneously estimate the orbit, attitude and shape of an unknown object from
photometric data and has since been extended to include other SO characteristics such as mass4

and spin state.5 Being rooted in filtering techniques, these approaches are limited in practice by
the initial conditions, specifically on the attitude, of the unknown object. This difficulty is being
addressed in Ref. [6], which develops methods to identify initial static attitude estimates to initialize
the attitude filter without any knowledge of the initial attitude configuration.

Further SO characterization is possible when once considers multispectral decomposition of the
reflected light. Specifically, whereas monochromatic light curves can only render information about
the SO’s shape and attitude, multispectral imaging can be used to estimate the surface parameters
of the SO. Hall et al. first demonstrated methods to estimate surface materials and their abundances
from multispectral light curves. These methods estimate the fraction of each material that compose
each facet of the SO, but assume that the attitude is perfectly known. Reference [7] utilizes a least-
squares approach to determine the material composition in order to classify an unknown SO’s bus
type. While these methods consider the material makeup of the SO, they neglect the effect on the
objects shape or dynamics. Since an SO’s surface reflectance depends on the material makeup, and
reflectance is a contributing factor in solar radiation pressure modeling, knowledge of the surface
materials can ultimately yield more accurate dynamic modeling, especially for GEO objects.

Multispectral light curves are one method that has shown promise for determining SO material
properties. Another method to ascertain SO material properties is through the use of polarized light
curves. Incoming light reflecting off a surface will undergo a degree of polarization. The degree
depends on the index of refraction and extinction coefficient, which are properties of the surface
materials. Reference [8] demonstrates the benefit of polarized data by successfully identifying an
unknown SO’s material makeup using monochromatic polarized light. However, that work requires
that the shape of the SO be known. The current work expands on that work to simultaneously
estimate both the shape and material properties of an SO. Various studies will be shown that as-
sess the observability of estimating both quantities. For example, it may be possible that multiple
shape/material combinations produce the same estimate output. Still, this is the first attempt to es-
timate both quantities, which may lead to a realistic approach for the overall characterization of an
SO.

The proposed approach leverages a data-driven, multiple-model adaptive estimation framework
to identify, in real time, the hypothesized system model that best represents the observed data. The
proposed approach is validated through three simulation use cases. The remainder of this paper
is as follows. First, the observation model for light reflecting off a faceted SO is reviewed. Next,
the model for polarized light reflections is introduced, including the Stokes vector which is the
primary observation set used. The multiple-model adaptive estimator is then discussed followed by
the simulation use cases.
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Figure 1 Facet Reflection Geometry

LIGHT CURVE REFLECTANCE MODEL

This section provides and overview of the observation model considered in this work. The princi-
pal observations used are two components of the Stokes vector, a representation of polarized light.
The observed light is assumed to be composed of light reflected off an object model comprised of a
N faceted sides.

Faceted Shape Model

Space object (SO) models considered in this work consist of a finite number a flat facets that are
assumed rigid. Curved surfaces can be modeled as a number of connected flat facets, with accuracy
increasing with the number of facets. Each facet is described using a set of three orthonormal basis
vectors (uB

n , uB
u , and uB

v ) and the facet area A, as shown in Figure 1. The vector uB
n points in

the direction of the outward normal to the facet while the vectors uB
u and uB

v span the plane of the
facet. The notation (·)B denotes that the vector is expressed in body coordinates. In this analysis,
the object is assumed to be a rigid body so that the unit vectors uB

n , uB
u and uB

v do not change since
they are expressed in the body frame.

The unit vector uI
sun points from the SO to the Sun and the unit vector uI

obs points from the SO to
the observer and is expressed in inertial (superscript I) coordinates:

uI
sun =

rI − rIsun

∥rI − rIsun∥
(1a)

uI
obs =

rI − rIobs

∥rI − rIobs∥
(1b)

where rI is the position vector of the SO, rIsun is the position of the sun and rIobs is the position vector
of the observer, all referenced in an Earth-centered inertial coordinate system such as J2000.9 The
vector uI

h, known as the Sun-observer bisector, is the normalized half vector between uI
sun and uI

obs:

uI
h =

uI
sun + uI

obs

∥uI
sun + uI

obs∥
(2)

Note that uI
sun and uI

obs are time-varying due to the dependence on the satellite, Sun and observer
positions at the specific time of observation.



A faceted object representation can be used to model the apparent magnitude of an observed
object. The apparent magnitude is a measure of the brightness of the object, and is one of the
typically reported quantities from electro-optical (EO) sensors. For an object consisting of N facets,
the apparent magnitude, mapp, can be represented by

mapp = −26.7− 2.5 log10

∣∣∣∣∣
N∑
i=1

Fobs,i

Csun,vis

∣∣∣∣∣ (3)

where −26.7 is the apparent magnitude of the Sun, and Csun,vis = 455 W/m2 is the power per
square meter of visible sunlight impinging on the SO. The fraction of light that is reflected towards
the observer from facet i, Fobs,i, is given by

Fobs,i =
Fsun,i Ai (u

I
n,i · uI

obs)

d2
(4)

where d is the distance between the observer and the SO, and Ai is the area of the ith facet. The
fraction of visible sunlight that strikes an object (and is not absorbed) is

Fsun,i = Csun,vis ρtotal,i (u
I
n,i · uI

sun) (5)

Note that in Eq. (3), the summation only incorporates facets that are actively reflecting light towards
the observer. If either the angle between the surface normal and the observer’s direction or the angle
between the surface normal and the Sun direction is greater than π/2 then there is no light reflected
toward the observer. If this is the case then the fraction of visible light is set to Fsun,i = 0. The final
term, ρtotal,i the total bidirectional reflectance distribution function (BRDF), which is described in
the next section.

Unpolarized BRDF Model

A BRDF is a mathematical modeling of how light reflects off an opaque surface. BRDFs are
functions of two input variables, the directions of the incoming and outgoing light. The total BRDF
output, ρtotal,i, is comprised of a specular component (ρspec,i) and a diffuse component (ρdiff,i):

ρtotal,i = ρspec,i + ρdiff,i (6)

The diffuse component represents light that is scattered equally in all directions (Lambertian), and
the specular component represents light that is concentrated about some direction (mirror-like). The
BRDF model used in this work is a modified version of the Phong model described in Ref. [10]
which is summarized here. The specular term of the BRDF is given by

ρspec, i =

√
(ηu,i + 1) (ηv,i + 1)

8π

(
uI
n, i · uI

h

)

ηu,i(u

I
h · uI

u, i)
2 + ηv,i(u

I
h · uI

v, i)
2(

1−
[
uI
n,i · uI

h

]2)


uI
n, i · uI

sun + uI
n, i · uI

obs − (uI
n, i · uI

sun)(u
I
n, i · uI

obs)
Freflect, i

(7)
where Freflect,i is the Fresnel reflectance:

Freflect,i = Rspec,i + (1−Rspec,i)(1− uI
sun · uI

h,i)
5 (8)



If the surface was perfectly smooth, all of the Fresnel reflectance would be directed along the re-
flectance direction, expressed in body coordinates as

uB
reflect = uB

sun − 2(uB
sun · uB

n )u
B
n (9)

where uB
sun is the Sun vector in body coordinates. However, real materials have some level of surface

roughness, which results in many small surface normals that are oriented in different directions.
Therefore, the specular reflectance can be thought of as a cone distributed around the specular
reflection direction given in Eq. (9), with the distribution (in the local u and v directions) defined by
the terms ηu and ηv. Throughout this work, nu,i = nv,i is assumed.

The diffuse term of the BRDF is given by

ρdiff,i =

(
28Rdiff,i

23π

)
(1−Rspec,i)

1−(1− uI
n,i · uI

sun

2

)5
1−(1− uI

n,i · uI
obs

2

)5
 (10)

In Eqs. (7) and (10) the terms Rspec,i and Rdiff,i are the specular and diffuse reflectance coefficients
of the ith facet. This work assumes surfaces are opaque (non-transmitting) and non-absorbing so
that Rspec,i +Rdiff,i = 1.

Polarized Light

While the scalar mapp gives the total intensity of the reflected light, it does not contain informa-
tion about the light’s polarization. However, the Fresnel reflectance of unpolarized light (such as
sunlight) will be polarized so long as the vectors uI

h and uI
n are not aligned. One common exam-

ple of this phenomenon can be observed by looking at the surface of a body of water or a metal
roof while wearing polarized sunglasses. Since many surfaces of SOs are relatively flat, they will
produce polarized Fresnel reflectance components. It is this phenomenon that this work seeks to
exploit.

The most common representation for polarized light is through the Stokes vector. The Stokes
vector, S, is a four dimensional vector defined as:

S =
[
S0 S1 S2 S3

]T (11)

where S0 describes the total energy in a light beam and is conceptually equivalent to mapp in Eq. (3),
S1 describes the amount of linear horizontal or vertical polarization, S2 describes the amount of
±45◦ linear polarization, and S3 describes the amount of right- or left-handed circular polariza-
tion.11 An alternative representation of the Stokes vector normalizes the components by S0:

Ŝ ≡


1

S1/S0

S2/S0

S3/S0

 (12)

This representation permits the polarization state of the light beam without containing its total inten-
sity and is useful for describing a number of important polarization states. Randomly polarized (or
“unpolarized”) light has Ŝ = [1 0 0 0]T . Linear horizontal polarization has Ŝ = [1 1 0 0]T , and
linear vertical polarization has Ŝ = [1 −1 0 0]T . Linear +45◦ polarization has Ŝ = [1 0 1 0]T ,



and linear −45◦ polarization has Ŝ = [1 0 −1 0]T . Right-handed circular polarization has
Ŝ = [1 0 0 1]T , and left-handed circular polarization has Ŝ = [1 0 0 −1]T .

As mentioned, incident light beams reflecting off a surface become polarized. This transforma-
tion can be represented through the Mueller matrix, M , which transforms the Stokes vector of an
incoming light beam, Sin, to that of the transmitted or reflected light beam, Sout:

Ŝout = M Ŝin (13)

The Mueller matrix for polarimetric Fresnel reflection, MF , is given by11

MF =
1

2


Rs +Rp Rs −Rp 0 0
Rs −Rp Rs +Rp 0 0

0 0 2Re(rsr∗p) 2Im(rsr
∗
p)

0 0 −2Im(rsr
∗
p) 2Re(rsr∗p)

 (14)

where rs =
√
Rs, rp =

√
Rp, Re(·) and Im(·) refer to the real imaginary parts, respectively, and

the superscript ∗ denotes the complex conjugate. Also, Rs is the Fresnel reflectance coefficient for
radiation perpendicular to the plane of incident flux, and Rp is the Fresnel reflectance coefficient for
radiation parallel to the plane of incident flux.

Since sunlight is randomly polarized, it has a Stokes vector of Ŝin = [1 0 0 0]T . Thus, the
Stokes vector of the Fresnel reflection is

ŜF =


Rs +Rp

Rs −Rp

0
0

 (15)

From this, it is seen that Fresnel reflectance of randomly polarized light has linear horizontal or
vertical polarization, but no ±45◦ or circular polarization. Thus, in the case of reflected sunlight,
only the S0 and S1 terms are non-zero and can be leveraged.

Polarized BRDF Model

The BRDF model presented in the earlier section is now extended to the polarized case. The
polarized s- and p-components of the Fresnel reflection must be computed. The terms Rs and Rp

can be computed as11

Rs =

∣∣∣∣∣(n2 − sin2θi)1/2 − cosθ
(n2 − sin2θ)1/2 + cosθ

∣∣∣∣∣
2

(16a)

Rp =

∣∣∣∣∣n2cosθi − (n2 − sin2θi)1/2

n2cosθi + (n2 − sin2θi)1/2

∣∣∣∣∣
2

(16b)

where n ≡ n2/n1 is the relative index of refraction of the reflected medium to the medium of the
incident beam and θ is the angle of incidence. For a model consisting of flat facets the angle of
incidence is the angle between the uI

sun and uI
obs from Eq. (1):

θ = cos−1
(
uI

sun · uI
obs
)

(17)



For reflecting objects in a vacuum (such as space), n1 = 1, yielding n = n2.

Equation (16) can be expanded to12

Rs =
a2 + b2 − 2 a cosθ + cos2θ
a2 + b2 + 2 a cosθ + cos2θ

(18a)

Rp = Rs
a2 + b2 − 2 a sin θtanθ + sin2θ tan2θ
a2 + b2 + 2 a sinθ tanθ + sin2θ tan2θ

(18b)

where

a2 =
1

2

{√
(m2 − k2 − sin2θ)2 + 4m2k2 +m2 − k2 − sin2θ

}
(19a)

b2 =
1

2

{√
(m2 − k2 − sin2θ)2 + 4m2k2 − (m2 − k2 − sin2θ)

}
(19b)

where the complex representation for the index of refraction, n = m+ ik is used; m is the real part
of the refractive index and k is the extinction coefficient.13 For dielectric materials, k = 0 and thus
n is real, whereas k is nonzero for conductors (such as metals) resulting in a complex n.

The terms Rs and Rp are the components of the Fresnel reflection in the planes perpendicular
and parallel to the plane of the incident flux, respectively. These components are carried forward in
place of Freflect,i in Eq. (7). That is:

ρspec, s, i =

√
(ηu,i + 1) (ηv,i + 1)

8π

(
uI
n, i · uI

h

)

ηu,i(u

I
h · uI

u, i)
2 + ηv,i(u

I
h · uI

v, i)
2(

1−
[
uI
n,i · uI

h

]2)


uI
n, i · uI

sun + uI
n, i · uI

obs − (uI
n, i · uI

sun)(u
I
n, i · uI

obs)
Rs, i (20)

with an analogous result for ρspec, p, i. The diffuse coefficients in the s- and p- directions are given
by

ρdiff, x, i =
Tx

Ts + Tp
ρdiff, i x = {s, p} (21)

where Ts = 1−Rs and Tp = 1−Rp and ρdiff, i is given by Eq. (10). The total BRDF in the s- and
p- directions is then computed as

ρtotal,i, x = ρspec,i, x + ρdiff,i, x x = {s, p} (22)

These terms are then used in Eq. (5) and (4), ultimately yielding Fobs, i, s and Fobs, i, p reflecting
facets. These values are summed over all reflecting facets:

Fobs, x =

N∑
i=1

Fobs, i, x x = {s, p} (23)

The non-zero components of the Stokes vector can then be computed as[
Ŝ0

Ŝ1

]
=

[
Fobs,s + Fobs,p
Fobs,s − Fobs,p

]
(24)

Note again that Ŝ0 is equivalent to the apparent magnitude, with the mapping between the two given
by

mapp = −26.7− 2.5 log10

(
Ŝ0

Csun,vis

)
(25)



Shape and Material Estimation using Multiple-Model Adaptive Estimation

This work focuses on leveraging the Stokes vector to aid in the identification of SO shape and ma-
terial properties. Neither the material properties m or k, nor the shape are directly observable using
traditional real time estimation approaches. To overcome the observability issue, a multiple-model
adaptive estimation (MMAE) approach is used to identify the shape and material characteristics of
the observed object.

MMAE is a recursive algorithm that uses a bank of estimators, each dependent on a particular
hypothesis, p(ℓ), to determine an estimate based upon an unknown physical process under consider-
ation. Hypotheses in this context correspond to different mathematical models, or parameter values
that underpin the observed system. Each model is weighted according to the likelihood function,
i.e. the likelihood that a particular hypothesis resulted in the observed measurement, and are updated
in a recursive manner to capture the temporal performance of a particular hypothesis:

ϖ
(ℓ)
k = ϖ

(ℓ)
k−1p (ỹk−1|x̂

−(ℓ)
k−1 )

ϖ
(ℓ)
k ←

ϖ
(ℓ)
k

M∑
j=1

ϖ
(j)
k

(26)

where the weight ϖ(ℓ)
k ≡ p (p(ℓ)|Ỹk) is the probability that hypothesis ℓ represents the system

model conditioned on the observation set up to the current time k, Ỹk = {ỹ1, ỹ2, . . . , ỹk}. The
likelihood function can be computed based on the output from the individual estimator, p (ỹk|x̂

−(ℓ)
k ).

Assuming a Kalman filter or other sequential Gaussian estimator, the likelihood is given by

p (ỹk|x̂
−(ℓ)
k ) =

1

det
(
2πS

(ℓ)
k

)1/2 exp{−1

2
e
(ℓ)T
k S

(ℓ)
k

−1
e
(ℓ)
k

}
(27)

where e
(ℓ)
k ≡ ỹk − ŷ−

k is the measurement residual and S
(ℓ)
k is the innovations covariance from the

estimator. For a more detailed description of the MMAE framework, including the fusion of state
estimates from the bank of filters, readers are referred to Refs. [3] and [14].

SIMULATION RESULTS

A set of simulation results are shown to demonstrate the capability of the developed approach.
Three simulation cases are presented. Case 1 considers a situation where all of the shape models
within the hypothesis set are the same and only the material differs between models and is meant to
demonstrate the ability to identify material properties using the polarimetric data. In case 2, multiple
shape models are used while the material is held constant, demonstrating the ability to discern shape
using the proposed approach. The last case considers multiple shape and material combinations,
consistent with a more rigorous real world use case of different satellites and/or debris objects.

For all simulations, an SO is in near-GEO orbit with orbital elements given by a = 42, 164 km,
e = 0.01, i = 20◦, Ω = 279◦, ω = 208◦, and M0 = 160◦. The simulation epoch is 15 October
2013 at 06:18:15 GST. The SO’s attitude quaternion is randomly generated, and the angular rate of
the SO in body coordinates is ωB

B/I = [−2475.1 1031.3 1650.1]T deg/hr. The state of the system



evolves according to

r̈ = − µ

r3
r (28a)

q̇ =
1

2
Ξ (q)ωB

B/I (28b)

ω̇B
B/I = 0 (28c)

where r is the SO’s position and q is the SO’s attitude quaternion. Each of the estimators within the
MMAE framework is executing an Unscented filter as the underlying state estimation technique.3

All test cases assume that the position, velocity and angular rate states are perfectly known and
that the initial attitude state is corrupted by 10◦ of attitude error in each body axis. Initial standard
deviations in the states are 15◦ degrees in attitude, 24 deg/hr in angular rate, 10 km in position and
100 m/s in velocity.

Topocentric right ascension, declination, and the S0 and S1 Stokes parameters are generated using
a ground station located at 149.0◦ W, 29.6◦ N and 1.631 km. Measurements are constructed using
instantaneous geometry. Astrometric observations are corrupted by zero-mean Gaussian white noise
with standard deviations of 3 arc-seconds. Measurement noise on the Stokes parameters is also zero-
mean, Gaussian white noise with standard deviations of

σS0 = σS1 =
4
√
2h c

λπD2Q∆t
σne (29)

where σne is the spectral density of noise in the electron count given by:

σne =
√
σ2
d∆t2 + σ2

r (30)

In Eqs. (29) and (30), h is Planck’s constant, c is the speed of light in a vacuum, λ = 500 nm
is the wavelength of the photons, σd = 1 is the spectral density of dark current, σr = 6 is the
spectral density of the read noise, ∆t = 1 s is the exposure time of the image, D = 2.4m is the
aperture diameter, and Q = 0.62 is the quantum efficiency. For more details on the noise model
and parameters for the polarimeter see Ref. [15]. Observations are simulated for 30 minutes at 1
Hz. When generating photometric observations, it is assumed that the Sun is the sole source of
illumination.

Table 1 Shape Model Dimensions
Dimension Small Box Plate Large Box
Height (m) 1.3 1.8 2.0
Width (m) 1.4 1.75 2.1
Depth (m) 1.2 0.175 2.2

Table 2 Material Model Properties
Material m k ηu, ηv Rdiff

Gallium Arsenide 3.8570 0.1980 1000 0.02
Aluminum 1.1987 7.0488 100 0.0

Gold 0.2773 2.9278 100 0.0
Kapton 1.4950 9.2e-5 515 0.3



The models, shape and material, used for the use cases are shown in Tables 1 and 2, and in
Fig. 2. For all cases, SO models are assumed to be constructed of a single material, e.g. aluminum
or another material. Case 1 considers that all models within the bank have the same shape. The
bank, consisting of four models, is populated with small boxes, with differing materials. This case
is conceptually the same as those of Ref. [8], and serves to validate the proposed implementation.
The true material for this case is Kapton, which is quickly identified as shown in the model weights
presented in Figure 3(a).

(a) Small Box (b) Thin Plate (c) Large Box

Figure 2 Shape Models

The second case considers differing shape models, but all constructed of the same material, in
this case aluminum. The true system model is a small box. Model weights for this case can be
found in Figure 2(a). Initially, the two box shapes share an equal weight before the small box shape
is identified. Again, this is a relatively benign case, consistent with the simulation cases presented
in Ref. [3], except that polarized light is used in lieu of monochromatic light.
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Figure 3 MMAE Model Weights for Cases 1 and 2

The final use case considers a more realistic case where the model bank considers two different
shape factors, each represented as being comprised of two different materials. The shapes consid-
ered are the plate and large box and the materials are gallium arsenide (GaAs) and aluminum. The
truth model in this case is a GaA plate, similar to a broken off solar panel. The model weights for
this case can be found in Figure 4(a). As can be seen, the correct model is immediately chosen



with a high probability. This is not unexpected given the drastic differences between the material
properties of GaAs and aluminum. Specifically, GaAs creates both specular and diffuse reflections
while aluminum will only create specular reflections, since pure metals do not exhibit the subsur-
face scattering behavior that is responsible for most specular reflection.8 This result demonstrates
the power in utilizing polarized light when considering material properties as one of the unknown
system parameters. The state estimate errors for this case are also shown. Figure 4(b) displays
the root-mean-squared error and corresponding 3σ covariance bounds from this case. All states
converge nicely and are well contained within the covariance bounds, displaying consistency in the
estimates.
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Figure 4 Case 3 Results

CONCLUSIONS

The ability to estimate material and shape properties of unknown space objects is presented. A
multiple-model adaptive estimation framework is utilized to determine the most probable object
shape and material composition. The Stokes vector representation of the polarized light is used as
the enabling observations for this technique. Polarized light is used as the degree of polarization in
reflected sunlight can be directly attributed to the material properties of the space object’s surface
materials. The presented approach has been demonstrated to produce accurate characterization
results when both the material and shape of the object are unknown, but represented as part of a
bank of candidate models. The developed approach provides one way to estimate material properties
from unresolved imaging. Enhancements may be possible by augmenting the developed approach
with multispectral imaging; a technique known to facilitate space object material characterization.
Future work includes the fusion of these two techniques, as well as using polarized light curves
to characterize more exquisite space object models comprised of multiple materials and complex
shapes.
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