Problem 1.1 A 2-kHz sound wave traveling in the x-direction in air was observed to have a differential pressure $p(x,t) = 10 \text{ N/m}^2$ at x = 0 and $t = 50 \mu \text{ s}$. If the reference phase of p(x,t) is 36°, find a complete expression for p(x,t). The velocity of sound in air is 330 m/s.

Problem 1.8 Two waves on a string are given by the following functions:

$$y_1(x,t) = 4\cos(20t - 30x)$$
 (cm)
 $y_2(x,t) = -4\cos(20t + 30x)$ (cm)

where x is in centimeters. The waves are said to interfere constructively when their superposition $|y_s| = |y_1 + y_2|$ is a maximum, and they interfere destructively when $|y_s|$ is a minimum.

- (a) What are the directions of propagation of waves y₁(x,t) and y₂(x,t)?
- (b) At t = (π/50) s, at what location x do the two waves interfere constructively, and what is the corresponding value of |y_s|?
- (c) At t = (π/50) s, at what location x do the two waves interfere destructively, and what is the corresponding value of |y_s|?

Problem 1.9 Give expressions for y(x,t) for a sinusoidal wave traveling along a string in the negative x-direction, given that $y_{\text{max}} = 40 \text{ cm}$, $\lambda = 30 \text{ cm}$, f = 10 Hz, and

- (a) y(x,0) = 0 at x = 0,
- **(b)** y(x, 0) = 0 at x = 3.75 cm.

Problem 1.13 The voltage of an electromagnetic wave traveling on a transmission line is given by $v(z,t) = 5e^{-\alpha z}\sin(4\pi \times 10^9 t - 20\pi z)$ (V), where z is the distance in meters from the generator.

- (a) Find the frequency, wavelength, and phase velocity of the wave.
- (b) At z = 2 m, the amplitude of the wave was measured to be 2 V. Find α .

Problem 1.16 Evaluate each of the following complex numbers and express the result in rectangular form:

- (a) $z_1 = 8e^{j\pi/3}$
- **(b)** $z_2 = \sqrt{3} e^{j3\pi/4}$
- (c) $z_3 = 2e^{-j\pi/2}$
- (d) $z_4 = j^3$
- (e) $z_5 = j^{-4}$
- (f) $z_6 = (1-j)^3$
- (g) $z_7 = (1-j)^{1/2}$

Problem 1.19 If z = -2 + j4, determine the following quantities in polar form:

- (a) 1/z,
- (b) z³,
- (c) $|z|^2$,
- (d) Im{z},
- (e) Im{z*}.

Problem 1.21 Complex numbers z_1 and z_2 are given by

$$z_1 = 5 \angle -60^\circ$$

$$z_2 = 4 / 45^{\circ}$$
.

- (a) Determine the product z₁z₂ in polar form.
- (b) Determine the product z₁z₂* in polar form.
- (c) Determine the ratio z₁/z₂ in polar form.
- (d) Determine the ratio z₁*/z₂* in polar form.
- (e) Determine √z₁ in polar form.

Problem 1.26 Find the phasors of the following time functions:

- (a) $v(t) = 9\cos(\omega t \pi/3)$ (V)
- **(b)** $v(t) = 12 \sin(\omega t + \pi/4)$ **(V)**
- (c) $i(x,t) = 5e^{-3x}\sin(\omega t + \pi/6)$ (A)
- (d) $i(t) = -2\cos(\omega t + 3\pi/4)$ (A)
- (e) $i(t) = 4\sin(\omega t + \pi/3) + 3\cos(\omega t \pi/6)$ (A)

Problem 1.27 Find the instantaneous time sinusoidal functions corresponding to the following phasors:

- (a) $\tilde{V} = -5e^{j\pi/3}$ (V)
- (b) $\tilde{V} = j6e^{-j\pi/4}$ (V)
- (c) $\tilde{I} = (6+j8)$ (A)
- (d) $\tilde{I} = -3 + j2$ (A)
- (e) $\tilde{I} = j$ (A)
- (f) $\tilde{I} = 2e^{j\pi/6}$ (A)

Problem 1.28 A series RLC circuit is connected to a generator with a voltage $v_s(t) = V_0 \cos(\omega t + \pi/3)$ (V).

- (a) Write the voltage loop equation in terms of the current i(t), R, L, C, and $v_s(t)$.
- (b) Obtain the corresponding phasor-domain equation.
- (c) Solve the equation to obtain an expression for the phasor current \(\widetilde{I} \).